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Abstract 

 The Vehicle Routing Problem (VRP) is a core logistics challenge where routing choices drive cost and service 

quality. Reinforcement Learning (RL), and in particular Proximal Policy Optimization (PPO), now rivals 

traditional metaheuristics by learning adaptive routing policies that transfer across instances. We compare PPO 

with the well-established Ant Colony Optimization (ACO) on city-based benchmarks. Extensive experiments on 

synthetic and real datasets substantiate these findings. Results show PPO delivers comparable or superior routing 

efficiency and, after training, orders-of-magnitude faster inference, whereas ACO stays competitive on static VRPs 

but falters in dynamic, large-scale settings. Our analysis underscores trade-offs between learning-based and search-

based methods, highlighting scalability, computation time, and adaptability, and offers guidance for future 

intelligent logistics optimization. 

Keywords Last-Mile Delivery, Reinforcement Learning (RL), Proximal Policy Optimization (PPO), 

Metaheuristics, Ant Colony Optimization (ACO), Smart locker, Logistics Optimization. 

 

 

1. Introduction 

The Vehicle Routing Problem (VRP) underpins modern e-commerce and urban logistics [1]. It asks how a fleet 

can serve dispersed customers and return to base while minimizing distance, time, or emissions [2]. Because the 

VRP is NP-hard, exact solvers scale poorly, so decades of research have favored heuristics and metaheuristics that 

trade a little optimality for a lot of tractability [3].  

Two recent trends now stretch those classical methods: unattended smart-locker delivery, which decouples 

customer presence from drop-offtime [4], and high-frequency dynamism driven by real-time traffic, late orders, 

and crowd-sourced fleets [5]. These factors enlarge instances, add constraints (locker capacity, pickup windows, 

energy budgets), and demand rapid re-optimization [6].  

https://doi.org/10.65718/inspireSS.2026.3002
https://doi.org/10.65718/inspireSS.2026.3002
https://inspirequill.org
https://inspirequill.org/index.php/inspireSmartSystems
https://creativecommons.org/licenses/by/4.0/
https://inspirequill.org/index.php/inspireSmartSystems
mailto:jbenhra@ensem.ac.ma
https://doi.org/10.65718/inspireSS.2026.3002


 
 Inspire Smart Systems, Vol. 1, No. 1, 2026   10 

Ant Colony Optimization (ACO) remains effective for static VRPs thanks to its exploration, exploitation balance 

[19], but it must restart whenever inputs shift, limiting real-time use [20]. Reinforcement learning, particularly 

Proximal Policy Optimization (PPO), offers an alternative: it learns an offline policy and then generates routes in 

milliseconds, amortizing training cost over many instances [21-22].  

Smart-locker networks compound the challenge. While they cut failed deliveries and idling [23], their capacity 

limits and pickup-time preferences reshape route feasibility [24]. Encoding such nuances in an RL state space lets 

a PPO agent internalize locker availability, whereas pheromone-based heuristics need bespoke tuning or repair 

operators [25-26].  

Our study therefore: (1) frames last-mile VRP with smart lockers for Casablanca, Marrakech, and Tangier as a 

sequential decision process [27]; (2) develops city-specific PPO agents and a tuned ACO baseline under identical 

metrics and fleets [28]; and (3) benchmarks them, showing PPO cuts distance by up to 17 % with sub-second 

inference, while ACO remains faster when no pretrained model exists [29].  

By situating these findings within the drive for greener, faster, and more autonomous logistics, we underscore how 

learning-based solvers can complement, rather than replace, established metaheuristics [30-31], and how Industry 

4.0 enablers such as blockchain-secured traceability and AI-driven analytics are already reshaping last-mile 

operations [32]. 

 

2. State of art  

 

2.1. Ant Colony Optimization (ACO)  

2.1.1. Principle  

Artificial “ants” build a route step-by-step, choosing the next customer by combining the pheromone strength on 

an edge, an accumulated memory of past good decisions, and a heuristic such as inverse distance [13]. Pheromone 

deposited on high-quality tours is reinforced, while global evaporation steadily lowers all trails to avoid early 

stagnation [13]. This positive-feedback search, “follow stronger trails, reinforce the best paths” [14], has proved 

effective across many VRP variants and constraint sets [16].  

 

2.1.2. Formulations  

Pheromone update [13]  

τ𝑖𝑗(𝑡 + 1) = (1 − 𝑝)τ𝑖𝑗(𝑡) + ∑ 𝛥τ𝑖𝑗
𝑘

𝑚

𝑘=1

(𝑡) 

 

• τ𝑖𝑗(𝑡) is the pheromone level on edge (i,j) at iteration t.  

• 𝑝 ∈(0,1) is the pheromone evaporation rate; larger ρ implies faster evaporation.  

• 𝛥τ𝑖𝑗
𝑘  is the amount of pheromone deposited by ant k on (i, j) during iteration t.  

• m is the number of ants  

Equation (1) balances reinforcement with “forgetting,” so only edges in consistently good solutions accumulate 

pheromone.  

 

Probabilistic transition rule[13]  

𝑝𝑖𝑗
𝑘 (𝑡) =  

[τ𝑖𝑗(𝑡)]𝛼 [η𝑖𝑗]𝛽

∑ [τ𝑖𝑙(𝑡)]𝛼 [η𝑖𝑙]𝛽 𝑙 ∈𝑁𝑖
𝑘

 



 
 Inspire Smart Systems, Vol. 1, No. 1, 2026   11 

 

• 𝑝𝑖𝑗
𝑘 (𝑡) is the probability that ant k at node iii moves next to node jjj at iteration t.  

• τ𝑖𝑗(𝑡) is the current pheromone level for edge (i, j).  

• η𝑖𝑗 is a heuristic factor (often η𝑖𝑗 = 1

𝑑𝑖𝑗
 , the inverse of the distance).  

• α≥0 is the exponent controlling how strongly ants follow pheromones.  

• β≥0 is the exponent controlling how strongly ants follow the heuristic.  

• η𝑖𝑙 is the set of feasible nodes for ant k from node i.  

If α is large, ants heavily prioritize exploiting learned pheromone trails. 

If β is large, ants prioritize exploring edges with higher heuristic value.  

 

2.1.3. Strengths & limits  

ACO is flexible, easy to parallelize and often delivers near-optimal routes without problem-specific learning, yet 

performance hinges on careful tuning and re-running when input data change [13].  

 

2.2. Proximal Policy Optimization (PPO)  

2.2.1. Principle  

PPO is a policy-gradient RL algorithm that improves a stochastic policy while clipping each update to stay close 

to the previous policy, preventing destabilizing jumps [10]. A VRP episode is modelled as an MDP where the state 

encodes depot/vehicle position and unserved customers, the action selects the next customer (or depot return), and 

the reward is the negative travel cost so maximizing cumulative reward minimizes distance [12].  

 

2.2.2. PPO Policy Equation  

Clipped objective [10]: 

PPO typically represents its policy as (a ∣ s), the probability of taking action a given state s under parameters θ. 

The update rule clips the probability ratio between old and new policies, ensuring changes are not too drastic [10]. 

The clipped objective can be written as:  

 

𝐿𝐶𝐿𝐼𝑃  (𝜃) = 𝐸𝑡  [min (𝑟𝑡  (𝜃)Â, 𝑐𝑙𝑖𝑝(𝑟𝑡  (𝜃), 1 −  𝜖, 1 +  𝜖)Â ] 

 

• 𝑟𝑡 (𝜃) =  𝜋𝜃 (𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
 (𝑠𝑡)

 is the probability ratio between new and old policies.  

• Â is an estimator of the advantage (how much better an action is compared to average).  

• ϵ is a small hyperparameter (e.g., 0.1 or 0.2) controlling the clipping range.  

The function min (⋅,⋅) forces the optimizer to pick the clipped or unclipped objective, whichever is lower, thereby 

discouraging updates that move rt(θ) outside [1−ϵ, 1+ϵ]. This reduces variance in training and helps maintain stable 

performance. In VRP, states correspond to the vehicle’s current position and the unvisited customers; actions 

choose the next customer to serve; and rewards are usually negative distance or cost. By sampling many simulated 

VRP episodes, PPO refines θ to yield better routes over time.  
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2.2.3. Advantages for VRP  

The approach is data-driven, capable of discovering routing patterns that go beyond hand-crafted heuristics [10]. 

It is scalable, effectively handling hundreds of customers by leveraging neural-network policies [9]. With fast 

inference, the model can generate high-quality routes in milliseconds once trained, making it well-suited for 

dynamic dispatch scenarios [12]. Additionally, the policy is adaptable, allowing for periodic fine-tuning as new 

traffic or order data become available [12].  

ACO offers interpretable, pheromone-guided search with strong anytime performance on static instances [13, 4].  

PPO trades a higher offline training cost for real-time inference and on-line adaptability [12, 9]. Choosing or 

hybridizing these methods depends on the frequency of instance changes, latency constraints, and available 

compute.  

 

3. Benchmark Methodology for PPO vs ACO Comparison 

To concretely compare PPO and ACO on VRP, we consider a benchmarking study across three city-based 

instances: Casablanca, Marrakech, and Tangier. These instances represent realistic logistics scenarios in different 

cities, allowing us to evaluate how each algorithm performs in distinct settings. Below we outline the methodology 

used for this comparative experiment:  

Problem Setup: Each city instance consists of a set of delivery locations (customers) spread around the city and a 

central depot. For simplicity, we assume a capacitated VRP: a fixed fleet of vehicles (with uniform capacity) starts 

at the depot and must serve all customer demands, returning to the depot when routes are completed. The goal is 

to minimize the total distance traveled by all vehicles while serving all customers. Distances between locations are 

based on real coordinates and road distances for each city (ensuring a realistic, non-uniform distance matrix) and 

explicitly factor in relevant geographic and cadastral considerations. Accordingly, Tangier’s Road network 

incorporates notable elevation changes (affecting travel times and fuel consumption), Marrakech features 

predominantly flat terrain (leading to more consistent travel speeds), and Casablanca, a larger metropolis, entails 

more complex routing due to its dense infrastructure and frequent congestion. As a result, Casablanca has a slightly 

higher number of customers in its instance compared to Marrakech and Tangier in our setup, reflecting its greater 

urban sprawl and heightened logistical demands. 
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Figure 1. Spatial Distribution of Parcel Lockers: A Geographic Representation in Tanger. 
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Figure 2. Spatial Distribution of Parcel Lockers: A Geographic Representation in Marrakech. 

 

 
 

Figure 3. Spatial Distribution of Parcel Lockers: A Geographic Representation in Casablanca. 
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3.1. Ant Colony Optimization (ACO) Implementation  

We adopted a conventional ACO approach for the Vehicle Routing Problem (VRP). In our implementation, each 

“ant” incrementally builds a solution by selecting the next customer to visit according to two main factors:  

• Pheromone Trails: A measure indicating how favorable an edge (between two locations) has been in 

previous solutions, raised to the power 𝛼.  

• Heuristic Value: The inverse of distance between the current location and a potential next customer, 

raised to the power 𝛽.  

• Once an ant’s vehicle runs out of capacity or it finishes serving all assigned customers, it returns to the 

depot and may switch to a new vehicle if available. After a set of ants (i.e., a generation) have 

constructed their solutions, pheromone values are updated:  

• Evaporation: Pheromones across all edges are scaled by (1−𝜌).  

• Deposition: Each ant deposits additional pheromone on the edges it traversed, with amounts inversely 

proportional to the ant’s total route cost. Hence, routes with lower cost reinforce higher pheromone 

levels, guiding subsequent solutions.  

For larger city instances (e.g., Casablanca with 100 customers), we typically run around 60 ants for 200 iterations. 

These parameters are consistent with existing ACO literature [7] and yield a reasonable balance between runtime 

and solution quality. 

 

3.2. Proximal Policy Optimization (PPO) Implementation  

Our solver learns to reassign customers to vehicle clusters; a cost-aware 3-Opt routine then turns every cluster into 

a route. The objective is total travelled distance.  

 

3.2.1. Training Phase  

State information consists of the distance matrix, a one-hot assignment matrix (customer → vehicle), vehicle 

capacities and customer demands.  

• The policy is split into two convolutional actors:  

1. Node-selection actor. Two 3 × 3 Conv2D layers (27 kernels each) followed by ReLU and a fully 

connected layer output a categorical distribution over 𝑁 customers.  

2. Cluster-assignment actor. The same 2-layer CNN backbone feeds a fully connected layer that 

produces logits for K vehicle clusters; a capacity mask zero out clusters that would overflow.  

The critic shares this two-layer CNN backbone but ends with a single linear unit that estimates the state value. All 

networks process a 3-D “image” made of the distance matrix (1 channel) stacked with K binary cluster maps, 

letting the CNN exploit spatial regularities in the adjacency structure.  

After each reassignment the environment reruns 3-Opt on every cluster and gives the agent a reward equal to the 

distance reduction divided by a constant scale. Parameters are updated with the clipped PPO objective and 

Generalized Advantage Estimation (GAE) [11].  

 

3.2.2. Solution Phase  

When training stops the best assignment seen is refined by a short random reassignment search plus one more 3-

Opt round, then converted into final vehicle routes. This inference step still calls 3-Opt but with a small, fixed 

budget, so it is far faster than running a full metaheuristic from scratch.  
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To clarify how the PPO approach works for VRP, we provide a simplified pseudo-code for the training and solution 

process. This outlines how the reinforcement learning agent learns to construct routes and then uses that learned 

policy. 

Pseudo-code for PPO-based VRP solver  
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4. Benchmark Results and Discussion  

We tested two algorithms, Ant Colony Optimization (ACO) and Proximal Policy Optimization (PPO), on three 

city-based VRP instances: Casablanca (largest), Marrakech (medium), and Tangier (smallest), with node index 0 

serving as the depot in every case.  

 

Table 1. Morocco CVRP Cases. 

Instance  City  Vehicles  Customers  Capacity 

vector  

Demand vector  

N40k5  Tanger  5  39  [43, 47, 39, 

56, 47]  

[5, 6, 7, 5, 9, 3, 6, 8, 6, 9, 3, 4, 1, 8, 

5, 9, 5, 7, 4, 8, 6, 10, 5, 2, 8, 7, 3, 2, 

7, 9, 10, 3, 2, 10, 5, 4, 6, 5, 4]  

N60k7  Marrakech  6  59  [48, 57, 39, 

59, 37, 49, 

40]  

[7, 10, 7, 1, 7, 3, 6, 3, 2, 9, 3, 6, 5, 7, 

7, 1, 6, 2, 9, 3, 7, 3, 10, 2, 6, 2, 1, 6, 

2, 10, 8, 3, 1, 2, 9, 3, 10, 5, 5, 10, 10, 

4, 9, 9, 4, 8, 10, 10, 1, 10, 2, 3, 5, 5, 

1, 6, 5, 3, 9]  

N100k9  Casablanca  9  99  [85, 69, 55, 

50, 84, 75, 

58, 65, 60]  

[4, 8, 10, 8, 5, 10, 7, 10, 7, 6, 8, 3, 10, 

1, 2, 5, 10, 3, 8, 3, 8, 2, 3, 7, 9, 2, 7, 

2, 5, 10, 7, 3, 9, 10, 10, 2, 4, 10, 5, 3, 

7, 5, 10, 10, 6, 6, 6, 6, 8, 6, 2, 3, 9, 6, 

1, 4, 9, 1, 5, 8, 2, 4, 3, 9, 7, 1, 9, 2, 4, 

3, 2, 4, 6, 10, 10, 1, 5, 8, 7, 9, 3, 8, 4, 

8, 4, 2, 3, 3, 7, 7, 5, 10, 3, 10, 8, 9, 8, 

4, 10]  

 

For PPO, hyperparameter tuning was conducted using a grid search strategy implemented via Itertools, allowing 

us to explore a predefined range of values for each parameter in a systematic and exhaustive manner. This approach 

enabled a direct comparison of multiple configurations while keeping the search space interpretable and 

manageable. The best-performing configuration was:  

• num_clusters = len(capacities),  

• actor_lr = 1e-5,  

• critic_lr = 1e-5,  

• gamma = 0.99,  

• lam = 0.95,  

• clip_epsilon = 0.2,  

• kl_target = 0.01,  

• beta = 1.0,  

• entropy_coeff= 0.1,  

• num_kernels = 27,  

• max_steps = 1000,  

• reward_scale = 10.0,  

• seed = 42.  
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For ACO, we similarly used grid search via itertools to tune key parameters by testing all combinations from a 

fixed candidate set. This allowed us to identify the parameter configuration that produced the best solution quality 

across instances. The selected parameters were:  

• num_of_generations = 200,  

• ant = number of smart lockers,  

• alpha = 0.2,  

• beta = 10,  

• rho = 0.9.  

Here we summarize them and suggest potential optimizations to mitigate weaknesses:  

 

Table 2. Result Summary. 

Instance  City  ACO Distance  ACO Time (sec)  PPO Distance  PPO Time (sec)  

n100k9  Casablanca  234.228  1886.727  194.176  3520.23  

N60k7  Marrakech  115.778  812.572  114.35  1256.72  

N40k5  Tanger  69.293  440.267  60.025  870.173  

 

Benchmarking on three Moroccan VRP instances shows a clear distance advantage for PPO over ACO:  

• Tangier (39 customers) 69.29 km → 60.03 km  

• Marrakech (59 customers) 115.78 km → 114.35 km  

• Casablanca (99 customers) 234.23 km → 194.18 km  

The largest reduction (-17 %) appears in Casablanca, where the learned policy exploits repeated spatial patterns; 

the smallest gap (-1 %) occurs in Marrakech, suggesting that ACO’s pheromone search already captures most of 

the structure there. Computationally, ACO completes in 10–30 min, while PPO needs roughly twice as long 

because training is executed per instance. When a previously trained PPO is reused for inference only, generation 

time falls to milliseconds, reversing the timing gap [18].  Both methods are sensitive to hyper-parameters. ACO’s 

performance shifts with α,β,ρ; PPO reacts strongly to the learning rate and clip coefficient. Grid search delivered 

robust settings, α = 0.2, β = 10, ρ = 0.9 for ACO and lr = 10⁻⁵, clip = 0.2 for PPO, but small changes can alter the 

distance–time trade-off.  

Finally, ACO remains fully instance-agnostic, whereas PPO’s quality depends on training data similarity; a 

significant geography or demand shift would require retraining or fine-tuning. 
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Figure 4. PPO-Optimized Route for VRP in Casablanca 

 

 
Figure 5. ACO-Optimized Route for VRP in Casablanca 
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Figure 6. Comparison between PPO and ACO optimization: (a) PPO-Optimized Route for VRP in Marrakech 

 

 
Figure 6. Comparison between PPO and ACO optimization: (b) ACO-Optimized Route for VRP in Marrakech. 
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Figure 7. Comparison between PPO and ACO optimization: (a) PPO-Optimized Route for VRP in Tanger. 

 

 
 

Figure 7. Comparison between PPO and ACO optimization: (b) ACO-ACO-Optimized Route for VRP in Tanger. 
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5. Discussions and Future Research  

This study compared two state-of-the-art heuristics for the Vehicle Routing Problem, Ant Colony Optimization 

(ACO) and Proximal Policy Optimization (PPO), on three realistic last-mile datasets that vary in demand scale 

and fleet size. Results demonstrate that a well-trained PPO policy delivers 1 – 17 % shorter routes than an 

equivalently tuned ACO metaheuristic, with the largest savings observed on the densest instance (Casablanca). 

The improvement stems from PPO’s capacity to learn joint customer-to-vehicle assignments and intra-route 

ordering directly from reward feedback, effectively performing a meta-optimization that encodes problem 

structure in its neural parameters [12].  

Yet the distance advantage comes at a cost: when the time needed to train a fresh model is included, PPO’s wall-

clock runtime is roughly double that of ACO. In an operational setting where a single model can be reused across 

many daily dispatches, this training overhead is amortised and inference latency drops below one second [18]. 

Where every instance is unique or data are limited, ACO remains attractive because it requires no training phase, 

scales gracefully to new constraints, and supports straightforward parallelisation [13].  

The key managerial insight is therefore contingent. Firms with high-frequency or real-time routing needs, and 

access to sufficient historical data, gain most from an offline-trained PPO service. Operators facing sporadic, 

heterogeneous problems can rely on ACO to secure near-optimal tours with minimal set-up effort. Hybridising the 

methods may remove this trade-off: PPO can generate a high-quality initial solution in milliseconds that ACO then 

refines within a short time budget, combining learning speed with swarm-based polishing [16].  

Future research should first focus on blending learning and swarm intelligence rather than treating them as 

competing paradigms. A natural next step is a two-stage pipeline in which a pretrained PPO policy produces an 

initial set of routes in milliseconds, after which a short ACO or 3-opt phase refines those tours within a tight time 

budget [16]. Such hybrids promise the best of both worlds: the speed and data-driven insight of reinforcement 

learning combined with the polishing power and interpretability of pheromone-based search. Progress also depends 

on richer neural encoders: replacing the current shallow CNN with graph-attention or transformer layers could 

capture long-range spatial correlations and scale the learned policy to fleets that serve hundreds or even thousands 

of customers [10, 17]. Curriculum schedules and meta-learning routines will be required so the same agent can 

generalise from village-scale to megacity-scale instances without catastrophic forgetting. 

A second line of work aims at true real-time adaptability and autonomy. Online fine-tuning of the PPO policy, 

using replay buffers and lightweight gradient steps during deployment, would allow the agent to react to traffic 

disruptions or late customer requests while preserving its prior knowledge [12]. In parallel, self-adaptive ACO 

variants could learn their own pheromone parameters through a lightweight reinforcement signal, removing 

today’s manual calibration effort [13]. To build practitioner trust, both strands need explainability tools: attention 

heat-maps over street networks, saliency traces that reveal which customers influenced a decision, and 

visualisations of evolving pheromone trails can help dispatchers understand and validate automated 

recommendations.  

Finally, secure and predictive logistics will become critical as last-mile networks grow. Our laboratory prototype 

already anchors VRP plans on a permissioned blockchain, creating tamper-proof route and delivery logs for 

regulators and supply-chain partners [8]. The next step is to pair that immutable ledger with short-term demand 

forecasts so the optimiser starts from an informed view of tomorrow’s parcel volumes and customer geography 

[33]. Integrating forecasting modules directly into the optimisation loop could let the system pre-train on synthetic 

scenarios, warm-start daily runs, and continually improve as new data arrive, closing the gap between planning 

and execution in smart-locker delivery networks.  
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6. Conclusion 

This research demonstrates that Proximal Policy Optimization (PPO) offers a transformative approach to the 

Vehicle Routing Problem (VRP) in smart-locker logistics. Our comparison shows that PPO consistently achieves 

better routing efficiency, cutting distances by up to 17% in dense urban environments like Casablanca, while Ant 

Colony Optimization (ACO) continues to be a reliable, training-free solution for static and sporadic tasks. PPO's 

near-instantaneous inference makes it perfect for high-frequency, real-time operations where the computational 

overhead is rapidly amortized, despite the fact that it requires substantial initial training. 

The study notes that learning-based optimization is becoming increasingly important, but it also stresses that 

hybridity is the way of the future for logistics. Businesses can create quick, excellent delivery plans by combining 

PPO's predictive speed with ACO's refinement capabilities. Scaling these autonomous systems into robust, 

transparent, and megacity-ready delivery networks will require the integration of graph-attention networks and 

blockchain-secured demand forecasting in the future. 
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