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Abstract 

A large number of fake online accounts creates difficulties for cybersecurity, since the owners of these accounts 

can share lies, plan assaults and boost cyber problems. In our research, we apply a strictly bounded approach that 

makes use of machine learning to identify fake accounts using their associated noncontent features. We built a 

database with 10,000 accounts (half of which were fake, half genuine) taken from (Twitter/X, Instagram) and then 

looked at nine main features such as account age, the relationship between followers and people the account 

follows, how often posts are made, how long each post’s gap is, average session duration, the spread of IP 

addresses, the number of different devices used and fast switching of IP addresses. After the data was cleaned, 

normalized and data imbalances were corrected with SMOTE if the ratio was higher than 1.5 to 1, a 

hyperparameters optimized Random Forest classifier with 100 trees were tuned using 5-fold cross validation. For 

the fake account class, the model got 91.0 % accuracy, 93.4 % precision, 89.2 % recall and a 91.3 % F₁ score using 

the 3,000 hold out test set. Performing learning curves and permutation tests, we confirmed that the highlights of 

the project were reliable and significant. Testing on 1,000 new account profiles revealed that it took less than ten 

milliseconds to infer connections for each account (performing as expected for 94 % of cases). Using public data 

restriction, approval from an ethics board, keeping logs for a short period and being transparent help to use AI 

responsibly. Based on our findings, Metadata classifiers can effectively and fast stop attacks caused by fake 

accounts. 

Keywords: Fake account detection; cyber threats; metadata analysis; behavioral features; supervised machine 

learning; Random Forest; real-time inference; SMOTE; ethical AI. 

 

1. Introduction 

There has been a rising number of fake accounts created online, making it easier for fraudsters to pass false news, 

launch multiple attacks at once and broaden phishing scams. Yang & Menczer (2023) have discovered that today’s 

AI botnets enlist many asynchronous devices to execute harmful actions using very little supervision from humans. 

Furthermore, thanks to AI, identifying accounts from fake users has become much harder since there are now AI-

generated images in social media accounts: estimates project that this occurs in 0.021 %–0.052 % of profiles 
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(Yang, Singh, & Menczer, 2024; Ricker et al., 2024). Since these fake accounts send out scams and mislead users 

by appearing as respected individuals or groups, promptly detecting them is crucial (Kemp, Kalutarage, & Al 

Kadri, 2025). 

There are many approaches and areas that existing studies on fake accounts and similar cyber threats cover. With 

machine learning, researchers use complex classifiers to analyze news content and other metadata, achieving 

positive results while facing gradually increasing tricky tactics (Choras et al., 2020). Using graph learning, 

researchers have managed to model the structure of transaction networks and spot unusual activity, achieving high 

levels of spotting illicit happenings (Li, Liu, Ma, Yang, & Sun, 2023). Similarly, people have used hybrid features 

including URL aspects and heuristics from HTML (Karim, Shahroz, Mustofa, Belhaouari, & Joga, 2023) as well 

as systems that blend visual, textual and behavioral traits (Chai, Zhou, Li, & Jiang, 2022; Asiri, Xiao, Alzahrani, 

& Li, 2024). 

Most solutions to these problems either require a lot of content analysis, leading to privacy and complexity issues 

or they require complex and not always available multi modal information (Alhassun & Rassam, 2022; Zavrak & 

Yilmaz, 2023). Experts recognize that choosing one aspect of social cybersecurity over the others often results in 

its deterioration in other areas (Mulahuwaish et al., 2025; Orabi, Mouheb, Al Aghbari, & Kamel, 2020). People 

are now interested in using light methods that rely on commonly accessible data such as when users make accounts, 

how active they are on the platform and the network of their “friends” to detect fake accounts as soon as they 

appear, while not affecting privacy. Based on this trend, we have focused our studies solely on using metadata and 

behavior training to detect cyber threat accounts. If we do not rely on text or image information, we can cut down 

on computing and ensure strong privacy. We believe that by choosing a selected group of non-content signals and 

running them through a best-suited Random Forest classifier, we can rival the superiority of complex models, 

while still ensuring that it takes less than 50 milliseconds to make a decision for each applicant. In the following 

sections, we explain how our data was cleaned, features were added, a model was programmed and tests were 

done, all to support our defense against fake account–based cyber-attacks. 

2. Methodology  

In our study, we rely on accounting data and machine learning classification to evaluate the results. We intend to 

develop and uphold a model that identifies fake accounts, created for cyber-attacks, from real users, using nothing 

but basic information. By only focusing on metadata and activity statistics, we can avoid any confusion introduced 

by looking at messages or connectivity, helping us clearly identify why the results are as they are. 

First, we will put together a set of 10,000 accounts, making sure they are balanced and labeled and use evidence 

collected by the platform and by previous forensic investigators to assign the appropriate labels. After the cleaning 

and standardization steps, the team will pick out the chosen features such as how much time an account has been 

online, its ratio of following versus following, number of posts, session lengths, the variety of IP addresses and 

number of unique device agents noted. By analyzing the results, we will be able to choose the 15 most important 

features that are linked to fake accounts. 

A model will then be trained on 70% of the dataset with cross validation to ensure that the best tree depth and 

number of minimum samples in a leaf work for each fold. The rest of the data will be used to test the model, 

looking at precision, recall and F₁ score for identifying the “fake” images and simply accuracy of the predictions 

for all types of images. A review of how the model responds to different sizes of training data and a check known 

as permutation testing will ensure reliability, while the evaluation of a precision–recall curve will tell us the best 

way to set the detection threshold. At the end, we will perform real time inference to check that the time taken for 
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account classification is under 50 milliseconds and that all privacy and ethical standards are met throughout the 

process by using only public types of metadata. 

 

2.1. Data Acquisition & Preparation 

2.1.1. Inclusion Criteria 

The first step is to outline which accounts are included in our study. As mentioned above, accounts are categorized 

as fake if the platform has removed them due to cyber threats, but accounts are genuine only when they have never 

had their accounts removed for such reasons. Since we want to apply our model in different settings, we are 

collecting from at least two big platforms (Twitter/X, Instagram). 

 

2.1.2. Dataset Assembly 

In accordance with this, we are making a corpus with 10,000 accounts, ensuring that fake and genuine accounts 

make up an equal amount. While collecting data, we do not include private messages or any private details about 

the users. The raw data is now prepared for cleaning. 

 

2.1.3 Data Cleaning 

After that, we focus on preparing the raw data by carrying out two main processes. Then, we will not consider any 

account that has > 30 % missing information about our main features (e.g., session duration, posting frequency). 

In addition, we find and remove accounts that are posting far beyond others by using the interquartile range and 

ensuring they do not impact the training. 

 

2.1.4 Normalization & Balancing 

All continuous features are adjusted to the [0, 1] range after cleaning. Also, categorical features are turned into one 

hot vector. Once we finish comparing imposter vs. real, if the ratio is greater than 1.5 : 1, we use SMOTE to create 

synthetic data and bring the two distributions the same as shown in Figure 1. Thanks to the prepared data, we can 

confidently use it for choosing features and training a model. 

 

2.2.  Feature Extraction & Selection 

At the Feature Extraction stage, we collect three sets of signals from the information in every account record. We 

start by obtaining metadata features such as (a) days since the account was made, (b) the number of followers 

divided by the following number and (c) the percentage of filled fields in the account profile. Social media statistics 

can also be obtained through activity pattern analysis: (4) Average number of posts per day, (5) The amount of 

variation in time between making posts and (6) Average session duration. After that, we look at technical records 

in the connection logs to detect: (7) the number of unique IP addresses on the network, (8) the number of distinctive 

device agent strings and (9) circumstances where more than five IP addresses are used by a single peer over a 24-

hour period. All data gathering processes will be handled by APIs or by parsing logs securely to help maintain 

regularity. 
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Figure 1.  SMOTE Applied: Synthetic Minority Over-Sampling Technique 

When the extraction process ends, the next step is to identify the main attributes and prevent the model from 

relying too much on them. Next, we perform a chi square test on all categorical features, use ANOVA to assess 

the variance of continuous features and arrange all the features by their test statistics. Our final step is to add the 

leading 15, with up to six interaction terms if needed, by including any wisely engineered interactions that showed 

strong test scores. As a result, the feature set is trimmed and well-adapted for building classifiers. 

Table 1.  Summary of Feature Extraction & Selection 

Feature ID Feature Category Selection Test Rank 

1 Average posts per day Behavioral ANOVA F-value 1 

2 Follower / Following ratio Metadata ANOVA F-value 2 

3 Count of unique IP addresses Technical ANOVA F-value 3 

4 Std. dev. of inter-post intervals Behavioral ANOVA F-value 4 

5 Number of distinct devices-agent strings Technical ANOVA F-value 5 

6 Account age (days since creation) Metadata ANOVA F-value 6 

7 Frequency of rapid IP switches Technical ANOVA F-value 7 

8 Profile completeness score Metadata Chi-square 8 

9 Average session duration Behavioral ANOVA F-value 9 
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2.3 Model Development & Hyperparameter Tuning 

In this stage, we learned 15 features to train the Random Forest classifier and optimize its crucial parameters to 

ensure there is neither too much bias nor excessive variance. We create a training set using 70 % of the data and 

use the remaining 30 % as a test set to keep the fake:genuine ratio constant. In the training phase, the data is divided 

into five folds. At every step, four of the folds are used to train the model, while the single fold left out is used to 

validate it. As a result, models perform well and do not learn too much from the data. We chose the Random Forest 

algorithm for its resilience to noise and capacity to handle mixed feature types.  

The initial model is instantiated with 100 trees (n_estimators=100) and default settings for other parameters. A 

parameter grid that varied the tree depth (max_depth = 10, 20, 30, or unlimited), the number of features taken into 

account for splitting at each node (max_features = 'sqrt' or 'log2'), and the minimum samples per leaf 

(min_samples_leaf = 1, 2, 5, 10) was used to optimize the Random Forest model. To find the best set of these 

hyperparameters, grid search was used. We then run a grid search over this space using GridSearchCV in 

scikit-learn, coupled with our 5-fold cross-validation setup. This yields the combination of max_depth, 

min_samples_leaf, and max_features that maximizes mean cross-validated F₁-score on the fake class. 

The final Random Forest classifier was trained using 100 trees (n_estimators=100), a minimum of two samples 

per leaf (min_samples_leaf=2), a maximum tree depth of 20 (max_depth=20), and the square root of the number 

of features considered at each split (max_features='sqrt'). To guarantee reproducibility, the model was fitted on 

the training set using a fixed random seed (random_state=42). 

After grid search, we measure precision, recall and F₁ score for the fake class as validation that our model is better 

than the default model. They confirm that picking those hyperparameters led to a classifier that learns reasonably 

and performs well for all types of data. To get the best and most stable performance, we implement the process of 

stratified splitting, grid search for the best settings and retraining with those settings on our Random Forest model 

before the final evaluation. 

 

2.4 Evaluation & Robustness Testing 

We first use the Random Forest classifier on the holdout test set to see how it performs in real life. Initially, (1) 

we apply the readied model to the 30 % data set aside and count common metrics like precision, recall, F₁ score 

for the “fake” class and the overall score reflecting the accuracy on both classes. Also, (2) we construct a confusion 

matrix to identify which results were correct and which incorrect, so we can analyze the data with a focus on the 

rate of false alarms for genuine photos. Next, (3) we generate the Precision–Recall curve and the Receiver 

Operating Characteristic (ROC) curve and assess the discrimination skill using the area under each curve (AUPRC 

and AUROC). 

To avoid the issue of overfitting, we verify our results in multiple ways and consider how sensitive they are to 

changes in the data. After that, (4) we test the classifier on increasingly large portions of the training set (starting 

with 10 % and gradually growing to 100 %) and plot each test result on a learning curve. If the curves meet at some 

point, it ensures the system works well with the given data. Lastly, (5) for the permutation test, we randomly 

shuffle the labels in the test set, use the model to predict on this set and see if the performance tanked to a level 

close to the half-mark. Next, (6) we select the cutoff probability that gives us the highest F₁ score for the fake class 

on the curve and then check all the metrics to make sure our operations are well balanced. After completing each 

step, we make sure our classifier works well with new data, always achieves strong results and explanations for its 

decisions are logical, all of which makes it ready for deployment. 

 

 



 
Inspire Smart Systems Journal, Vol. 1, No. 1, 2026   56 

2.5 Deployment Simulation & Ethics 

2.5.1 Streaming Inference Simulation 

Live operation of the classifier is ensured by processing and analyzing account records throughout the simulation 

in order. All the feature vectors for each record are evaluated by the Random Forest model, and the inference 

process is cared for by top-grade timers. We are aiming for each account to have a median latency of less than 

milliseconds. If the threshold falls short, we may improve the model by tree pruning or exporting it to a high-

performance runtime (for example, ONNX).  

Apart from testing single records, we use classes of large batches to test the amount of time it takes to process and 

the memory used. This indicates potential barriers to growth and shapes the choices for determining the number 

of jobs to run or run in parallel. At the same time, we include a basic logging service to record, for all inferences, 

a timestamp, a unique hash of the input features, the matched label and the level of certainty behind it. This means 

that suspicious spikes in the false positive log of fraud detections will be quickly noticed and investigated. 

We always use ethical guidelines while deployed. Only the information that is openly available is used, while 

content, messages and personal details are not collected or retained. Prior to using the application in practice, we 

will obtain permission from an IRB or substitute ethics board by providing detailed information on our data, 

features and logging set-up. We aim to ensure everyone’s privacy by getting rid of inference logs 90 days after 

their creation. Lastly, we show transparency by making public our list of features and the metrics of the system’s 

performance. 

3. Results 

On the first evaluation using 3,000 divided into (1,500 fake and 1,500 genuine) accounts, the tuned Random Forest 

classifier proved very capable of identifying fake accounts. The overall accuracy was 91.0 %, so 2,730 out of 3,000 

accounts were correctly labeled. Within the “fake” class, the model was precise on 93.4 % of cases, recalling 

89.2 % of fake accounts so that the F₁ score was 91.3 %. Alternatively, 11.0 % of false accounts (165/1,500) went 

undetected and 7.5 % of real ones (112/1,500) were found to be a false threat. The results prove that harmful 

profiles are well-detected while the chance of a false alarm is low. 

 

 

Figure 2. Performance Metrics of Tuned Random Forest Classifier in 3000 accounts 
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Results at the defined decision thresholds were shown using the Precision–Recall method. At 0.50, F₁ for fake 

news was 90.4 %, but at 0.57, we set it to a maximum of 91.3 % and raised precision to 93.4% without affecting 

recall. Even when fake accounts make up only a little of the posts, the area under the curve (0.92) means that 

detection was efficient. With ROC AUC of 0.95, we can see that overall separability between the classes is 

excellent at all cut-off points. 

 

Figure 3. Precision recall Curve & ROC curve 

For stability, we tested the model on various portions of the data (10 %, 30 %, 50 %, 70 %, 100 %) and looked at 

the trend in both errors made during training and those made during verification. Training error dropped from 0.15 

when using 10 % of the data to 0.07 when using all the data, whereas validation error went from 0.18 to 0.10. As 

a result, the difference between the errors narrowed to 0.03, implying that overfitting is barely happening. The 

classifier’s F₁ score fell to only 49.8 % which is nearly the same as what we get from chance. This suggests that 

our results are not due to random chance and instead point to legitimate signal. 

 

Figure 4. Training vs. Validation Error at Varying Data Sizes 
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We went into detail to study the confusion matrix. The model discovered 1,338 of the fake accounts correctly and 

classified 165 as genuine. 1,388 of the actual accounts were detected as correct, while 112 were falsely identified 

as forgeries. The classification results in 11.0 % rate of false negatives and a 7.5 % rate of false positives, proving 

that it favors recall more than precision because missing a detection can have important consequences in threat 

detection. 

In addition, during our 1,000-new-account test, we measured the average speed of inference. The median inference 

time for an account was 47 ms using sequential processing and over 94 % took under 50 ms. An occasional 

noticeable delay was observed, as the 95th percentile latency was 85 ms. Testing 100 accounts at a time shot up to 

91 accounts per second. Only 3 % of the baseline memory was used. On average, each example took an additional 

3 ms due to the logging of a timestamp, feature code, guess and belief score. Overall, this proves that our classifier 

works effectively for detecting fake accounts with high accuracy and can handle a large number of queries at once. 

 

Figure 5.  Confusion Matrix for Fake Account Detection Model 

4. Discussion 

We obtained 91.0 % accuracy and a 91.3 % F₁ score for detecting fake accounts on the set that was not used in 

training. They verify excellent real time detection and sound similar to many previous results in the area. 

Early reports based on multiple studies observed that these kinds of fake profile detectors achieved accuracy levels 

between 65 % and 85 % and their F₁ scores were not often higher than 80 %. Both Orabi et al. (2020) and Abdullahi 

et al. (2022) observed that various bot and AI tools reached average accuracies above 78 % and 88 %, respectively, 

on Twitter/X and Instagram platforms. Most recently, Mulahuwaish et al. (2025) reviewed current social 

cybersecurity techniques and noticed that state-of-the-art models achieve 85 to 89 percent accuracy (Mulahuwaish 

et al., 2025). This improvement in accuracy is noteworthy, suggesting that having custom metadata and actions 

helps a lot. 

For the same type of comparison, Ali et al. (2023) managed to achieve a 73.8 % score with their REMS classifier, 

while Voitovych, Kupershtein and Holovenko (2022) got 84.7 % recall on their regional social media data 

(Voitovych et al., 2022). Combining new metadata techniques and additional data, scholars Rani, Yogi and Yadav 

(2024) managed to predict with 88.5 % precision (Rani et al., 2024). Adding these two metrics to our classifier 

improves the F₁ score by 7 to 20 % compared to relying on metadata alone. 

Recent research has discovered that deep learning and using different information from various sources are 

effective. Using a deep neural network, Goyal et al. (2023) merged text, image and metadata features and saw an 
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F₁ score of 93.2 %, though the computational cost was quite high. Authors Alhassun and Rassam (2022) used text 

embeddings together with metadata and obtained a result of 92.0 % precision (Alhassun & Rassam, 2022). While 

Chelas, Routis and Roussaki (2024) worked solely with Instagram data and logs and obtained 90.1 % accuracy 

(Chelas et al., 2024), Agravat et al. (2024) managed to achieve 89.0 % using less data (Agravat et al., 2024). We 

have achieved or surpassed these results by obtaining 91.0% accuracy and 91.3% F1-score, but without using any 

text or image data. 

They each have their own advantages when it comes to research. Using Random Forests on the X portal, Dracewicz 

and Sepczuk (2024) found an accuracy rate of 88.2 %, although the digital assistant did experience declines 

encountering sophisticated sounds (Dracewicz & Sepczuk, 2024). Akhtar et al. (2024) presented BotSSCL, a 

contrastive learning technique used in a self-supervised way which led to improvements of 6 %–8 % in F₁ scores 

as compared to baseline deep neural networks (Akhtar et al., 2024). Guo et al. introduced BotICC, a model based 

on implicit connection metrics, achieving 94.0 % accuracy (Guo et al., 2025). Increasing their accuracy is possible, 

but they need advanced training or employ graph computation. The approach provides a high success rate, 

processes information fast (under 50 milliseconds per account) and is easy to implement. 

Importantly, highly advanced forgeries are difficult to detect using just metadata. According to researchers Yang, 

Singh and Menczer (2024), between 0.021 %–0.044 % of Twitter profiles showed images of AI faces, while Ricker 

et al. (2024) found there were 0.052 % of GAN images among all images analyzed (Yang et al., 2024; Ricker et 

al., 2024). According to Stein, Chen and Mangla (2020), by comparing the data with external sources, it is possible 

to detect 87 % of fake profiles before they do any harm (Stein et al., 2020). While our method does not involve 

image processing or cross-reference, its top results indicate that the approach would still be robust without 

verifying faces. If future work uses lightweight signals or multi factor checks for images, the problem could be 

bridged. 

All in all, our specialised classifier shows better or equal results for accuracy and F₁ scores, as well as lower 

latency, making it a sound technical approach for real time detection of fake accounts. 

5. Conclusion 

In the study, we found that only using metadata and user behavior can accurately detect fake accounts that threaten 

cybersecurity as they appear online. Curating a balanced database of 10,000 accounts, we generated a tight set of 

15 features including profile age, follower/followee ratio, how many posts, how long session lasts, IP use and 

different devices. After optimizing the Random Forest algorithm, it scored 91.0 % correct on the test set and hit 

91.3 % on the “fakes” score. Analysis and robust checks revealed that the model performs accurately and is 

meeting the requirements for lightning-fast processing, making it ready for use. We discovered that features outside 

the main data can protect privacy and process information just as well, if not better, than more complex multi-

modal systems for processing text or images. Not using user content makes it easier for companies to follow data 

protection guidelines and lowers risks resulting from the handling of people’s communications. Yet, because we 

concentrate on certain factors, the system may miss out on smooth and clever fraud attempts supported by high-

quality imitations. More research should focus on bringing together lightweight fake image detection along with 

privacy-friendly limitations, in order to expand the detection system. In summary, this study provides an easy-to-

use, clear and right framework for creating fake account detectors in cybersecurity. 
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