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Abstract 

As the global demand for renewable energy grows, effective management of photovoltaic (PV) systems is essential 

as the world's need for renewable energy increases. This paper presents the modeling and experimental validation 

of a 60 W monocrystalline photovoltaic module, with a focus on digital twin applications for photovoltaic system 

management, particularly energy generation forecasting and fault detection. The proposed model is based on the 

Single Diode Model (SDM), an electrical modeling approach widely adopted due to its balanced trade-off between 

simplicity and accuracy, and experimental validation of a 60 W monocrystalline PV module. A hybrid optimization 

technique that combines Powell's method and Particle Swarm Optimization (PSO) was created to estimate model 

parameters. Compared to standard PSO methods, which usually require 1,000 iterations, this hybrid approach 

achieved high accuracy in just 100 iterations. The modeling was implemented in MATLAB/Simulink and 

experimentally validated using data collected under two solar irradiance conditions (1000 W/m² and 500 W/m²), 

at 25°C and air mass AM1.5, using a flash-type solar simulator. The current-voltage (I-V) and power-voltage (P-

V) curves showed remarkable precision, with R2 values exceeding 0.998 and with MAE values of 0.2932W. Based 

on these results, the developed model proves to be highly suitable for digital twin-based applications, especially 

in scenarios that require high reliability, such as energy forecasting and real-time fault diagnosis. Furthermore, the 

developed experimental dataset is made publicly to support researchers who do not have access to specialized 

laboratory infrastructure. 

Keywords: Single diode model; PSO-Powell; Photovoltaic panel modeling; Experimental validation; Digital twin; 

Energy forecasting; Fault detection, Simulink. 

 

1. Introduction 

The growing demand for energy and technological advances in photovoltaic cells, especially monocrystalline 

silicon cells, which have led to increased efficiency and reduced module costs, have consolidated solar 

photovoltaic energy as one of the main sources of renewable energy. It is now a critical component of the global 

energy matrix, accounting for 6.9% in 2024 [1]. This growth, however, has brought new operational and 
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maintenance challenges for these systems, particularly the need for continuous performance monitoring, early fault 

detection, and tracking of module degradation over time. Issues such as partial shading, dirt accumulation, 

electrical connection failures, hot spot formation, and inverter inefficiencies can lead to significant reductions in 

energy production if not detected promptly [2].  

The digital twin is a virtual representation of a physical object, process, or system, capable of simulating its 

behavior in real time through continuous data exchange between the physical and virtual components. In 

photovoltaic systems, digital twins have the potential to revolutionize operations and maintenance by enabling 

real-time monitoring, accurate fault diagnosis, and simulation of operational scenarios that may lead to greater 

operational efficiency as well as cost reduction [3-6]. The reliability and accuracy of a digital twin depend directly 

on the precision of the model in representing the physical system, especially in applications involving fault 

diagnosis and prediction [7-8]. 

Among the approaches for building digital twins in photovoltaic systems, the most prominent are data-driven 

models, physics-based models (also known as mechanistic models, such as the Single Diode Model – SDM), and 

hybrid models that combine both strategies to integrate interpretability with predictive flexibility [9-14]. This work 

adopts the physics-based modeling approach, specifically the SDM, which is widely used in photovoltaic 

applications due to its balance between simplicity and fidelity to the real behavior of the module. The choice of 

this approach aligns with the objective of developing a digital model with a high degree of fidelity and reliability, 

which is essential for applications such as energy generation forecasting and fault detection and diagnosis while 

remaining compatible with future hybrid extensions through integration with data-driven techniques. 

Although many studies have already explored the modeling of photovoltaic modules based on the SDM, significant 

limitations still persist that may compromise the fidelity, applicability, and reliability of the generated models: 

 

i. Modeling based solely on manufacturer data: modeling that relies exclusively on datasheet values 

provided by manufacturers tends to be less accurate compared to approaches based on experimental data, 

as it lacks I–V and P–V curves obtained under real conditions, which are essential for robust validation. 

This limitation affects the fidelity and applicability of the resulting models, especially in critical 

applications such as digital twins for fault diagnosis, where small discrepancies between the model and 

the physical system can lead to incorrect decisions [15-20]. However, studies such as [21-24] rely on 

manufacturer data, while others like [23, 25] use experimental data but focus on reference cells, such as 

the RTC France cell, rather than complete modules. 

ii. Use of photovoltaic mini-modules: mini-modules are useful for preliminary testing and educational 

purposes but do not accurately reflect real-world operating conditions, as they differ in materials, 

encapsulation, and electrical configuration. Therefore, models derived from such devices tend to be less 

representative for demanding applications such as digital twins [26-27]. However, studies such as [27-

28] make use of photovoltaic mini-modules. 

iii. Low-accuracy parameter estimation methods: the quality of the models depends on the accuracy of the 

estimation of their electrical parameters, such as series resistance, shunt resistance, saturation current, 

ideality factor, and photocurrent [29-32]. However, some studies such as  [27, 33-34] still rely on 

traditional methods like Newton-Raphson, linear adjustments, or genetic algorithms (GA), which can lead 

to considerable errors, especially under off-maximum-power-point operating conditions, while others like  

[31, 35-37] apply more advanced algorithms such as PSO, JAYA optimization algorithm, and the 

Equilibrium Optimizer (EO), but focus on reference cells like Radio Technique Compelec (RTC) France 

cell rather than on actual modules. 

iv. Use of experimental data obtained under inadequate artificial lighting: the electrical response of 

photovoltaic cells varies significantly depending on the lighting conditions or light source. For this reason, 
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experimental data from modules should be obtained under Standard Test Conditions (STC), using 

certified solar simulators that comply with technical standards to ensure the reliability of the data [38]. 

This ensures that the modeled performance accurately reflects real-world operating conditions [39]. 

However, studies such as [28] use artificial lighting that does not accurately replicate the spectrum and 

intensity of natural sunlight. 

In contrast to the above studies, this paper provides the following contributions: 

▪ Modeling and validation of a 60 W monocrystalline photovoltaic module based on experimental data. 

▪ Validation of the model using data obtained from a flash-type solar simulator under STC. 

▪ Estimation of electrical parameters using a hybrid approach combining PSO and Powell methods, 

enabling efficient global search with local refinement. This combination results in more realistic 

parameters and models that closely match the experimental characteristic curves, which are essential for 

critical applications such as digital twins for fault diagnosis. 

▪ Provision of a validated digital model for integration into digital twins aimed at energy estimation and 

fault detection. 

▪ Publication of an experimental dataset including measurements of voltage, current, temperature, and solar 

irradiance, to support researchers without access to laboratory infrastructure in modeling solar modules 

and developing digital twin applications. 

2. Mathematical Modeling of the Module 

2.1. Single-Diode Model (SDM) 

The electrical model used in this work is based on the SDM, which is widely adopted in the literature for offering 

a good balance between accuracy and computational simplicity. This model represents the photovoltaic module as 

a photocurrent source (Iph) connected in parallel with an ideal diode, along with a series resistance (Rs) and a 

parallel (shunt) resistance (Rsh). The photocurrent (Iph) acts as the primary source of electrical current, while the 

ideal diode simulates the PN junction under different operating conditions. The series resistance accounts for 

internal ohmic losses, whereas the parallel resistance models leakage currents. The SDM has five main parameters 

that must be accurately estimated: photocurrent (Iph), diode saturation current (I0), series resistance (Rs), shunt 

resistance (Rsh), and diode ideality factor (n) [40-41]. The choice of this model is supported by recent studies [14, 

42-47] that discuss analytical and metaheuristic methods applied to the SDM, highlighting its practical relevance, 

simplicity, and reliability. When properly parameterized, the SDM provides results comparable to those of more 

complex models while maintaining high accuracy. For these reasons, the SDM was adopted in this work, 

particularly due to its clear and streamlined structure, which facilitates integration with hybrid optimization 

methodologies and digital twin frameworks. Figure 1 shows the electrical circuit corresponding to the SDM. 

 

 

Figure 1. Equivalent electrical circuit of the SDM [48]. 
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From the circuit, using Kirchhoff's laws, the single-diode model yields the following equations 1-7:  

 

The    𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ     (1) 

 

𝐼𝑑 = 𝐼0 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝐿.𝑅𝑠)

𝑛𝑁𝑠𝑘𝑇
) − 1]    (2)         

 𝐼𝑠ℎ =
𝑉+𝐼𝐿.𝑅𝑠

𝑅𝑠ℎ
 (3) 

 

𝐼𝑝ℎ = [𝐼𝑠𝑐 + 𝑘𝑖(𝑇 − 298)]
𝐺

1000
      (4) 

 

𝐼0 = 𝐼𝑟𝑠 (
𝑇

𝑇𝑛
)
3

. exp⁡[
𝑞𝐸𝑔0

𝑛𝑘
⁡(⁡

1

𝑇𝑛
−

1

𝑇
⁡)]⁡   (5) 

 

𝐼𝑟𝑠 =
𝐼𝑠𝑐

exp(
𝑞𝑉𝑜𝑐
𝑛𝑁𝑠𝑘𝑇

)−1
     (6) 

 

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝐿.𝑅𝑠)

𝑛𝑁𝑠𝑘𝑇
) − 1] −

𝑉+𝐼𝐿.𝑅𝑠

𝑅𝑠ℎ
    (7) 

Where: 

𝐼𝐿: Output current of the cell/panel 

𝑉: Output voltage of the panel 

𝐼𝑝ℎ: Photogenerated current 

𝐼𝑑: Diode current 

𝐼𝑠ℎ: Shunt (leakage) current 

𝐼0: Diode saturation current 

𝐼𝑟𝑠: Reference saturation current 

𝐼𝑠𝑐: Short-circuit current 

𝑉𝑜𝑐: Open-circuit voltage 

𝑅𝑠: Series resistance 

𝑅𝑠ℎ: Shunt (parallel) resistance 

𝑁𝑠: Number of cells in series 

𝑘: Boltzmann constant (1.38 × 10⁻²³ J/K) 

𝑞: Electron charge  (1.6 × 10⁻¹⁹ C) 

𝑇: Cell temperature (K) 

𝑇𝑛: Nominal temperature (298 K) 

G: Solar irradiance (W/m²) 

𝑘𝑖: Temperature coefficient of short-circuit current 

𝐸𝑔0 Bandgap energy of the semiconductor at 0 K 

𝑛: Diode ideality factor 

 

2.2. Hybrid Particle Swarm Optimization (PSO) + Powell algorithm for parameter estimation 

The parameter estimation was carried out using a hybrid algorithm that combines PSO with Powell's local 

refinement technique, aiming to enhance the estimation process. PSO is an algorithm inspired by social behavior 

patterns observed in nature, widely recognized for its efficiency in searching for optimal or near-optimal solutions  

[37, 43, 49-50]. This method iteratively updates the position of the particles within a predefined search space in 



 
 Inspire Smart Systems Journal, Vol. 1, No. 1, 2026   30 

order to minimize an objective function  [51-53], in this study, the error between the simulated I–V curve and the 

experimental data obtained from the photovoltaic module was minimized. The objective function used is shown 

in Equation 8. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐼𝑠𝑖𝑚𝑢𝑙𝑎𝑑𝑜(𝑉𝑖) − 𝐼𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙(𝑉𝑖)

2𝑁

𝑖⁡=1
     (8) 

 

To enhance the robustness of the results and avoid stagnation in local minima, PSO was complemented with the 

Powell method, which acts as a local refinement technique for the solutions obtained. This two-stage approach is 

particularly well-suited for dealing with the highly nonlinear nature of the single-diode model, enabling more 

efficient exploration of the search space and more accurate adjustment of the estimated parameters  [54-55]. 

 

2.3 PSO-Powell hybrid algorithm flowchart 

Figure 2 shows the workflow of the hybrid optimization process for estimating photovoltaic (PV) model 

parameters using Particle Swarm Optimization (PSO).  By updating particle positions and velocities, the algorithm 

iteratively minimizes the root mean square error (RMSE) between simulated and measured PV characteristics. 

Following convergence, a local Powell-based refinement is used to increase accuracy, and key PV parameters (Isc, 

Voc, and Pmax) are used for validation. 

 

Figure 2. Implemented PSO-Powell hybrid algorithm flowchart. 
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3. Materials and Methods 

The experimental tests were carried out using a flash-type solar simulator at the Institute of Energy and 

Environment of the University of São Paulo (IEE-USP). This equipment reproduces the Standard Test Conditions 

(STC) as shown in Figure 3. Lower and upper bounds were defined to guide the search within physically plausible 

regions, avoiding unrealistic or divergent solutions. These bounds were established based on the electrical 

characteristics of the photovoltaic module used Table I and recommendations from the literature [56-60]. 

 

 

Figure 3. Flash-Type Solar Simulator at IEE-USP. 

Table 1. Technical specifications of the photovoltaic module used 

Parameter Value 

Nominal power (Pmax) 60 W 

Voltage at maximum power point (Vmp) 18.62 V 

Current at maximum power point (Imp) 3.20 A 

Open-circuit voltage (Voc) 21.7 V 

Short-circuit current (Isc) 3.56 A 

Efficiency 17.89% 

Maximum system voltage 600 V 

Maximum fuse current 5 A 

Power temperature coefficient -0.51%/K 

Voltage temperature coefficient -0.39%/K 

Current temperature coefficient +0.08%/K 

Number of cells 32 (monocrystalline silicon) 

Technology PERC 

Dimensions (L × W × H) 742 × 452 × 25 mm 

Total module area 0.335 m² 

Weight 2.4 kg 

Protective enclosure IP code IP65 
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The photogenerated current 𝐼𝑝ℎ was set between 0.9. 𝐼𝑠𝑐 and 3.1. 𝐼𝑠𝑐, covering both shading losses and deviations 

from the ideal short-circuit current. The saturation current 𝐼0, typically ranging from 10−12 to 10−6 in silicon cells, 

was limited to this interval. The diode ideality factor 𝛼⁡ = 𝑛. 𝑁𝑠 was constrained between  1.0 and 1.7, typical 

values for monocrystalline modules. The use of PERC technology in the tested module, known for its passivation 

techniques that reduce recombination and enhance efficiency, justifies not considering 𝑛⁡ = 2. The modeling of 

the photovoltaic module was carried out using MATLAB/Simulink, employing blocks that represent the equations 

of the single-diode model described in Section 2. 

The series resistance 𝑅𝑠 was bounded between 0.01 and 0.5 Ω, while the shunt resistance 𝑅𝑠ℎ was set between 

100  and 800 Ω representing ohmic and leakage losses, respectively. These constraints improve the robustness of 

the optimization process, preventing physically unfeasible local minima and ensuring coherence of the estimated 

parameters. Table 2 presents the defined lower and upper bounds for each parameter. 

Table 2. Configuration of the Lower and Upper Bounds of the Optimized Parameters 

Parameter Lower Bound Upper Bound 

𝐼𝑝ℎ 0.9 Isc 3.1 Isc 

𝐼0 1 × 10⁻¹² 1 × 10⁻⁶ 

𝑛 1.0 1.7 

𝑅𝑠 0.01 0.5 

𝑅𝑠ℎ 100 800 

 

3.1. PSO Configuration 

For the PSO algorithm configuration, a maximum of 500 iterations was initially set. However, experimental results 

showed that convergence was consistently achieved well before this limit. At 100 iterations, the root mean square 

error (RMSE) was already below 0.0983, indicating that the PSO effectively explored the search space and 

approached the global minimum. Given this satisfactory early convergence and the subsequent application of 

Powell’s method for local refinement, the number of PSO iterations was reduced to 100. This configuration 

enabled Powell’s method to accurately locate the absolute minimum within the converged region, ensuring stable 

and precise parameter estimation while significantly reducing the overall computational cost. The initial population 

consisted of 50 particles, uniformly distributed within the predefined bounds of the five parameters to be estimated. 

The stopping criterion was defined as swarm convergence or reaching the maximum number of iterations, 

whichever occurred first. Table 3 summarizes the final PSO configuration adopted for the parameter estimation of 

the photovoltaic model. 

Table 3. PSO Configuration 

Category Details 

Algorithm PSO 

Objective RMSE minimization 

Number of parameters 5 

Initial population 50 particles 

Maximum iterations 100 

Stopping criterion Maximum iterations reached 

Initialization Random (uniform within bounds) 



 
 Inspire Smart Systems Journal, Vol. 1, No. 1, 2026   33 

3.2. Powell Configuration 

After the global search performed by PSO, the Powell method was employed for local refinement of the 

parameters, aiming to improve the accuracy of the estimates by using the best global solution as the starting point. 

Table 4 presents the configuration used for the Powell method. 

Table 4. Configuration of the Powell Method for Local Refinement 

Category Details 

Algorithm Powell (derivative-free local optimization) 

Objective Refine the parameters obtained by PSO 

Initial guess Best global solution from PSO 

Optimization method "Powell" via scipy.optimize 

Parameter bounds Same as those defined in the PSO 

Maximum number of iterations 100 

Stopping criterion Maximum iterations reached 

 

4. Results and Discussion 

The following presents the results obtained from the model validation experiments, followed by a discussion on 

the accuracy, robustness, and applicability of both the proposed method and the resulting digital model of the 

photovoltaic module. 

 

4.1 Estimated Parameters 

The parameters estimated using PSO and PSO enhanced with Powell are presented in Table 5. Figure 5 visually 

highlights the superior accuracy of the hybrid approach (PSO + Powell) in replicating the experimental I–V curve, 

while Table V displays the corresponding numerical values obtained by each method. Given the noticeable 

deviation of the PSO only curve from the experimental data, the discussion will focus solely on the comparison 

between the experimental results and the curve obtained using the hybrid estimation approach. This decision is 

supported by the fact that the PSO only model fails to accurately capture the knee and tail regions of the I–V 

characteristic, which are critical for evaluating model fidelity. 

Table 5 Comparison of the Estimated Parameters (SDM) using PSO and PSO + Powell 

Parameter Unit Value (PSO)  Value (PSO+Powell) 

𝐼𝑝ℎ A 3.4568 
 

3.4275 

𝐼0 A 1.0000e-10 
 

3.2272e-10 

𝑛 – 1.1179 
 

1.1577 

𝑅𝑠 Ω 0.50309 
 

0.24018 

𝑅𝑠ℎ Ω 390.6199 
 

406.3782 
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Figure 5. Comparison between the experimental I–V curve and the curves generated by PSO and PSO + Powell. 

4.2 Experimental vs Simulated Curves (I-V and P-V) 

After determining the model parameters, it is essential to validate the accuracy of the proposed approach. To this 

end, the characteristic current-voltage (I–V) and power-voltage (P–V) curves generated by the simulated model, 

using the estimated parameters, are compared with experimental measurements. This visual comparison enables 

assessment of the model's fidelity in replicating the real behavior of the photovoltaic module under different 

operating conditions. The corresponding curves are presented in the figures below. 

 

 

Figure 6. I–V Curve, Model vs Experimental (500 W/m² and 1000 W/m²) 
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Figure 7. P–V Curve, Model vs Experimental (500 W/m² and 1000 W/m²) 

4.3 Error Metrics 

To evaluate the performance of the obtained model, five widely recognized statistical metrics were employed: 

Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Coefficient of 

Determination (R²), and Mean Absolute Percentage Error (MAPE). These indicators quantify the discrepancy 

between the model's predictions, based on the extracted parametersand the experimental data collected in real time 

from the photovoltaic panel. RMSE, MSE, and MAE evaluate the magnitude of the prediction errors. RMSE and 

MSE penalize larger deviations more heavily due to squaring, while MAE offers a more robust measure against 

outliers. In all three cases, lower values indicate better model performance, with zero representing a perfect fit. R² 

measures the proportion of variance in the experimental data explained by the model, ranging from 0 to 1, with 

values closer to 1 indicating a better fit. Negative R² values suggest that the model underperforms compared to a 

naive prediction based on the mean. MAPE, expressed as a percentage, enables an intuitive understanding of the 

average prediction error relative to the actual values, making it particularly useful for cross-comparison across 

datasets of different scales. In the context of the Single Diode Model (SDM), RMSE and MAPE are especially 

relevant, as they directly reflect the model's ability to replicate the electrical behavior of the photovoltaic module 

under varying conditions. Table 6 summarizes the results obtained for all performance metrics, supporting the 

effectiveness of the proposed estimation methodology [9], 61-64]. Table VI presents the values obtained for these 

metrics. 

Table 6 Performance metrics (MAE, MSE, RMSE, R², and MAPE) 

 Metrics I–V I–P 

  1000 W/m² 500 W/m² 1000 W/m² 500 W/m² 

 MAE (A/W) 0.0156 0.0061 0.2932 0.1021 

 MSE (A²/W²) 0.0011 0.0001 0.4935 0.0327 

 RMSE (A/W) 0.0333 0.0094 0.7025 0.1809 

 R² 0.9983 0.9993 0.9985 0.9996 

 MAPE (%) 1.36 0.90 1.39 0.93 
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4.4 Discussion of the Results 

The results indicate a strong correlation between the simulated data and the experimental data. For the I–V curves, 

the RMSE values are very low, 0.0094 A and 0.0092 A for 1000 W/m² and 500 W/m², respectively, highlighting 

the model's effectiveness in accurately representing the real behavior of electric current as a function of voltage. 

Although the RMSE values for the I–P curves are higher (0.4430 W and 0.1443 W), this is expected due to the 

nature of electric power, which is the product of current and voltage. Small variations in either quantity are 

amplified when calculating power, especially near the maximum power point. Furthermore, the high R² values (all 

above 0.998) reinforce the quality of the fit, indicating that the model is capable of explaining more than 99.8 % 

of the variability in the experimental data. The Mean Absolute Percentage Error (MAPE) also remained below 1.5 

% in all cases, which is acceptable and desirable for applications that require high reliability, such as generation 

forecasting and fault detection in photovoltaic systems. Despite small discrepancies observed, particularly in the 

power curves, the errors remain within acceptable ranges for simulation, energy estimation, and future applications 

in digital twins. An important advantage of the hybrid approach adopted in this study is also highlighted in terms 

of computational efficiency. It was possible to achieve high levels of accuracy with only 100 PSO iterations, 

followed by refinement using the Powell method. In contrast, studies such as [65-68] which rely exclusively on 

PSO, require up to 1000 iterations to achieve convergence and satisfactory results in the parameter estimation of 

the single diode model. This significant difference underscores the potential of the hybrid strategy not only to 

improve model accuracy but also to substantially reduce computational cost. Figure 6 illustrates the comparison 

between the simulated I-V curves (PSO and Powell) and the experimental curve, reinforcing the performance of 

the proposed methodology. 

 

4.5 Relevance of the Model for Digital Twin Applications 

Although this work does not yet implement a full Digital Twin (DT) architecture, it establishes a solid foundation 

by delivering a validated and parameterized digital representation of a photovoltaic (PV) module, derived from 

experimental data. This model accurately replicates the electrical behavior of the real device, making it highly 

suitable for integration into future DT applications. 

A digital twin is a dynamic virtual counterpart of a physical system, continuously synchronized via sensor data. 

This integration enables real-time monitoring, control, diagnostics, and performance optimization. In this context, 

the proposed PV model can be incorporated into DT platforms to support key tasks such as operation, energy 

management, and predictive maintenance. 

Beyond its value for offline analysis, the model developed herein serves as a critical building block for advancing 

digital twin technologies in solar energy. It contributes to greater efficiency, reliability, and intelligence in the 

management of PV systems, especially in remote or underserved regions, where technical support is limited and 

operational continuity is essential. 

 

5. Conclusion 

This study presented the modeling and experimental validation of a 60 W monocrystalline photovoltaic (PV) 

module, using the Single-Diode Model (SDM) as the mathematical foundation. The model parameters were 

extracted through a hybrid optimization approach that combines Particle Swarm Optimization (PSO) with the 

Powell method. Experimental tests were conducted under two irradiance levels (1000 W/m² and 500 W/m²) using 

a flash-type solar simulator under standard test conditions (25 °C and AM1.5). The resulting model reproduced 

the experimental I–V and P–V curves with high fidelity, achieving low error metrics (such as MAE and RMSE) 
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and coefficients of determination (R²) above 0.998, demonstrating excellent accuracy in representing the module's 

electrical behavior. A key highlight is that this high level of performance was achieved with only 100 PSO 

iterations, significantly fewer than the 1000 iterations commonly required by pure PSO approaches, demonstrating 

the computational efficiency of the proposed hybrid method. The obtained solution provides a robust foundation 

for the development of digital twins for photovoltaic systems. While the complete digital twin architecture was 

not implemented in this study, the parametrized model is fully applicable for tasks such as energy forecasting, 

simulation under varying environmental conditions, and real-time fault detection by comparing simulated versus 

measured behavior. The model’s structure is also compatible with hybrid approaches that integrate physical and 

data-driven techniques, expanding its application potential. Additionally, the experimental dataset, including 

voltage, current, irradiance, and temperature measurements, will be made publicly available on GitHub and Kaggle 

to support researchers who lack access to specialized laboratory infrastructure. Future work will focus on extending 

the model to capture dynamic phenomena, such as transient responses and partial shading effects. Moreover, the 

model will be integrated into a full real-time digital twin architecture, connected via Internet of Things (IoT) 

protocols, enabling continuous monitoring, predictive maintenance, and intelligent control of PV systems. This 

evolution paves the way for more efficient, autonomous, and resilient solar energy systems. This work contributes 

to the advancement of the field of digital twins for solar energy, offering a robust and efficient modeling approach 

ready for real-world deployment. 
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