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Abstract

As the global demand for renewable energy grows, effective management of photovoltaic (PV) systems is essential
as the world's need for renewable energy increases. This paper presents the modeling and experimental validation
of a 60 W monocrystalline photovoltaic module, with a focus on digital twin applications for photovoltaic system
management, particularly energy generation forecasting and fault detection. The proposed model is based on the
Single Diode Model (SDM), an electrical modeling approach widely adopted due to its balanced trade-off between
simplicity and accuracy, and experimental validation of a 60 W monocrystalline PV module. A hybrid optimization
technique that combines Powell's method and Particle Swarm Optimization (PSO) was created to estimate model
parameters. Compared to standard PSO methods, which usually require 1,000 iterations, this hybrid approach
achieved high accuracy in just 100 iterations. The modeling was implemented in MATLAB/Simulink and
experimentally validated using data collected under two solar irradiance conditions (1000 W/m? and 500 W/m?),
at 25°C and air mass AM1.5, using a flash-type solar simulator. The current-voltage (I-V) and power-voltage (P-
V) curves showed remarkable precision, with R? values exceeding 0.998 and with MAE values of 0.2932W. Based
on these results, the developed model proves to be highly suitable for digital twin-based applications, especially
in scenarios that require high reliability, such as energy forecasting and real-time fault diagnosis. Furthermore, the
developed experimental dataset is made publicly to support researchers who do not have access to specialized
laboratory infrastructure.

Keywords: Single diode model; PSO-Powell; Photovoltaic panel modeling; Experimental validation; Digital twin;
Energy forecasting; Fault detection, Simulink.

1. Introduction

The growing demand for energy and technological advances in photovoltaic cells, especially monocrystalline
silicon cells, which have led to increased efficiency and reduced module costs, have consolidated solar
photovoltaic energy as one of the main sources of renewable energy. It is now a critical component of the global
energy matrix, accounting for 6.9% in 2024 [1]. This growth, however, has brought new operational and
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maintenance challenges for these systems, particularly the need for continuous performance monitoring, early fault
detection, and tracking of module degradation over time. Issues such as partial shading, dirt accumulation,
electrical connection failures, hot spot formation, and inverter inefficiencies can lead to significant reductions in
energy production if not detected promptly [2].

The digital twin is a virtual representation of a physical object, process, or system, capable of simulating its
behavior in real time through continuous data exchange between the physical and virtual components. In
photovoltaic systems, digital twins have the potential to revolutionize operations and maintenance by enabling
real-time monitoring, accurate fault diagnosis, and simulation of operational scenarios that may lead to greater
operational efficiency as well as cost reduction [3-6]. The reliability and accuracy of a digital twin depend directly
on the precision of the model in representing the physical system, especially in applications involving fault
diagnosis and prediction [7-8].

Among the approaches for building digital twins in photovoltaic systems, the most prominent are data-driven
models, physics-based models (also known as mechanistic models, such as the Single Diode Model — SDM), and
hybrid models that combine both strategies to integrate interpretability with predictive flexibility [9-14]. This work
adopts the physics-based modeling approach, specifically the SDM, which is widely used in photovoltaic
applications due to its balance between simplicity and fidelity to the real behavior of the module. The choice of
this approach aligns with the objective of developing a digital model with a high degree of fidelity and reliability,
which is essential for applications such as energy generation forecasting and fault detection and diagnosis while
remaining compatible with future hybrid extensions through integration with data-driven techniques.

Although many studies have already explored the modeling of photovoltaic modules based on the SDM, significant
limitations still persist that may compromise the fidelity, applicability, and reliability of the generated models:

i Modeling based solely on manufacturer data: modeling that relies exclusively on datasheet values
provided by manufacturers tends to be less accurate compared to approaches based on experimental data,
as it lacks I-V and P-V curves obtained under real conditions, which are essential for robust validation.
This limitation affects the fidelity and applicability of the resulting models, especially in critical
applications such as digital twins for fault diagnosis, where small discrepancies between the model and
the physical system can lead to incorrect decisions [15-20]. However, studies such as [21-24] rely on
manufacturer data, while others like [23, 25] use experimental data but focus on reference cells, such as
the RTC France cell, rather than complete modules.

il. Use of photovoltaic mini-modules: mini-modules are useful for preliminary testing and educational
purposes but do not accurately reflect real-world operating conditions, as they differ in materials,
encapsulation, and electrical configuration. Therefore, models derived from such devices tend to be less
representative for demanding applications such as digital twins [26-27]. However, studies such as [27-
28] make use of photovoltaic mini-modules.

iil. Low-accuracy parameter estimation methods: the quality of the models depends on the accuracy of the
estimation of their electrical parameters, such as series resistance, shunt resistance, saturation current,
ideality factor, and photocurrent [29-32]. However, some studies such as [27, 33-34] still rely on
traditional methods like Newton-Raphson, linear adjustments, or genetic algorithms (GA), which can lead
to considerable errors, especially under off-maximum-power-point operating conditions, while others like
[31, 35-37] apply more advanced algorithms such as PSO, JAYA optimization algorithm, and the
Equilibrium Optimizer (EO), but focus on reference cells like Radio Technique Compelec (RTC) France
cell rather than on actual modules.

iv. Use of experimental data obtained under inadequate artificial lighting: the electrical response of
photovoltaic cells varies significantly depending on the lighting conditions or light source. For this reason,
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experimental data from modules should be obtained under Standard Test Conditions (STC), using
certified solar simulators that comply with technical standards to ensure the reliability of the data [38].
This ensures that the modeled performance accurately reflects real-world operating conditions [39].
However, studies such as [28] use artificial lighting that does not accurately replicate the spectrum and
intensity of natural sunlight.

In contrast to the above studies, this paper provides the following contributions:

*  Modeling and validation of a 60 W monocrystalline photovoltaic module based on experimental data.

=  Validation of the model using data obtained from a flash-type solar simulator under STC.

= Estimation of electrical parameters using a hybrid approach combining PSO and Powell methods,
enabling efficient global search with local refinement. This combination results in more realistic
parameters and models that closely match the experimental characteristic curves, which are essential for
critical applications such as digital twins for fault diagnosis.

= Provision of a validated digital model for integration into digital twins aimed at energy estimation and
fault detection.

"  Publication of an experimental dataset including measurements of voltage, current, temperature, and solar
irradiance, to support researchers without access to laboratory infrastructure in modeling solar modules
and developing digital twin applications.

2. Mathematical Modeling of the Module

2.1. Single-Diode Model (SDM)

The electrical model used in this work is based on the SDM, which is widely adopted in the literature for offering
a good balance between accuracy and computational simplicity. This model represents the photovoltaic module as
a photocurrent source (Iph) connected in parallel with an ideal diode, along with a series resistance (Rs) and a
parallel (shunt) resistance (Rsh). The photocurrent (Iph) acts as the primary source of electrical current, while the
ideal diode simulates the PN junction under different operating conditions. The series resistance accounts for
internal ohmic losses, whereas the parallel resistance models leakage currents. The SDM has five main parameters
that must be accurately estimated: photocurrent (Iph), diode saturation current (10), series resistance (Rs), shunt
resistance (Rsh), and diode ideality factor (n) [40-41]. The choice of this model is supported by recent studies [14,
42-47] that discuss analytical and metaheuristic methods applied to the SDM, highlighting its practical relevance,
simplicity, and reliability. When properly parameterized, the SDM provides results comparable to those of more
complex models while maintaining high accuracy. For these reasons, the SDM was adopted in this work,
particularly due to its clear and streamlined structure, which facilitates integration with hybrid optimization
methodologies and digital twin frameworks. Figure 1 shows the electrical circuit corresponding to the SDM.

Ish
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Figure 1. Equivalent electrical circuit of the SDM [48].
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From the circuit, using Kirchhoff's laws, the single-diode model yields the following equations 1-7:

The IL = Iph - Id - ISh (1)
_ QUHILRY\
la =1Io [exp( nNSkT ) 1] @)
V+IL.Rs
[sp = ﬁ 3
G
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Where:
I : Output current of the cell/panel
V: Output voltage of the panel
I, Photogenerated current
I;: Diode current
I, : Shunt (leakage) current
I,: Diode saturation current
I.s: Reference saturation current
I Short-circuit current
V,.: Open-circuit voltage
Rg: Series resistance
Rgp,: Shunt (parallel) resistance
Ng: Number of cells in series
k: Boltzmann constant (1.38 x 1072 J/K)
q: Electron charge (1.6 x 107 C)
T: Cell temperature (K)
T,.: Nominal temperature (298 K)
G: Solar irradiance (W/m?)
k;: Temperature coefficient of short-circuit current
E4o Bandgap energy of the semiconductor at 0 K
n: Diode ideality factor

2.2. Hybrid Particle Swarm Optimization (PSO) + Powell algorithm for parameter estimation

The parameter estimation was carried out using a hybrid algorithm that combines PSO with Powell's local
refinement technique, aiming to enhance the estimation process. PSO is an algorithm inspired by social behavior
patterns observed in nature, widely recognized for its efficiency in searching for optimal or near-optimal solutions
[37, 43, 49-50]. This method iteratively updates the position of the particles within a predefined search space in
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order to minimize an objective function [51-53], in this study, the error between the simulated I-V curve and the
experimental data obtained from the photovoltaic module was minimized. The objective function used is shown
in Equation 8.

N
1 2
RMSE = N § ] 1(Isimulado(Vi) - Iexperimental(vi) ®)
i=

To enhance the robustness of the results and avoid stagnation in local minima, PSO was complemented with the
Powell method, which acts as a local refinement technique for the solutions obtained. This two-stage approach is
particularly well-suited for dealing with the highly nonlinear nature of the single-diode model, enabling more
efficient exploration of the search space and more accurate adjustment of the estimated parameters [54-55].

2.3 PSO-Powell hybrid algorithm flowchart

Figure 2 shows the workflow of the hybrid optimization process for estimating photovoltaic (PV) model
parameters using Particle Swarm Optimization (PSO). By updating particle positions and velocities, the algorithm
iteratively minimizes the root mean square error (RMSE) between simulated and measured PV characteristics.
Following convergence, a local Powell-based refinement is used to increase accuracy, and key PV parameters (Isc,

Read Voc, Isc, Vmp, Imp of PV
panel (experimental data)

Voc, and Pmax) are used for validation.

[ Initialize the particles randomly ]

'

a[ Compute RMSE (fitness) and update Pbest and Gbest ]

Is the solution
converged?

YES [ Save the Gbest and Pbest
of the solution

Final iteration?

[ Iteration = iteration + 1

'

Calculate new velocity and new
particle positions

v

Local refinement with Powell
(|n|t|aI|zed at Gbest) <

Validate S|mulated Isc, Voc,
Pmax

Figure 2. Implemented PSO-Powell hybrid algorithm flowchart.
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3. Materials and Methods

The experimental tests were carried out using a flash-type solar simulator at the Institute of Energy and
Environment of the University of Sdo Paulo (IEE-USP). This equipment reproduces the Standard Test Conditions
(STC) as shown in Figure 3. Lower and upper bounds were defined to guide the search within physically plausible
regions, avoiding unrealistic or divergent solutions. These bounds were established based on the electrical
characteristics of the photovoltaic module used Table I and recommendations from the literature [56-60].

Temperature Sensor

Flash Light Source

Figure 3. Flash-Type Solar Simulator at IEE-USP.

Table 1. Technical specifications of the photovoltaic module used

Parameter Value
Nominal power (Pmax) 60 W
Voltage at maximum power point (Vmp) 18.62V
Current at maximum power point (Imp) 320 A
Open-circuit voltage (Voc) 21.7V
Short-circuit current (Isc) 3.56 A
Efficiency 17.89%
Maximum system voltage 600 V
Maximum fuse current 5A

Power temperature coefficient -0.51%/K
Voltage temperature coefficient -0.39%/K
Current temperature coefficient +0.08%/K
Number of cells 32 (monocrystalline silicon)
Technology PERC
Dimensions (L x W x H) 742 x 452 x 25 mm
Total module area 0.335 m?
Weight 2.4 kg

Protective enclosure IP code 1P65
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The photogenerated current I,, was set between 0.9. I, and 3.1. I, covering both shading losses and deviations
from the ideal short-circuit current. The saturation current I, typically ranging from 10712 to 107° in silicon cells,
was limited to this interval. The diode ideality factor & = n. Ny was constrained between 1.0 and 1.7, typical
values for monocrystalline modules. The use of PERC technology in the tested module, known for its passivation
techniques that reduce recombination and enhance efficiency, justifies not considering n = 2. The modeling of
the photovoltaic module was carried out using MATLAB/Simulink, employing blocks that represent the equations
of the single-diode model described in Section 2.

The series resistance R was bounded between 0.01 and 0.5 Q, while the shunt resistance Ry, was set between
100 and 800 Q representing ohmic and leakage losses, respectively. These constraints improve the robustness of
the optimization process, preventing physically unfeasible local minima and ensuring coherence of the estimated
parameters. Table 2 presents the defined lower and upper bounds for each parameter.

Table 2. Configuration of the Lower and Upper Bounds of the Optimized Parameters

Parameter Lower Bound Upper Bound
Ipn 0.9 Isc 3.1 Isc
Iy 1 %10 1x10°°
n 1.0 1.7
R; 0.01 0.5
Rgn 100 800

3.1. PSO Configuration

For the PSO algorithm configuration, a maximum of 500 iterations was initially set. However, experimental results
showed that convergence was consistently achieved well before this limit. At 100 iterations, the root mean square
error (RMSE) was already below 0.0983, indicating that the PSO effectively explored the search space and
approached the global minimum. Given this satisfactory early convergence and the subsequent application of
Powell’s method for local refinement, the number of PSO iterations was reduced to 100. This configuration
enabled Powell’s method to accurately locate the absolute minimum within the converged region, ensuring stable
and precise parameter estimation while significantly reducing the overall computational cost. The initial population
consisted of 50 particles, uniformly distributed within the predefined bounds of the five parameters to be estimated.
The stopping criterion was defined as swarm convergence or reaching the maximum number of iterations,
whichever occurred first. Table 3 summarizes the final PSO configuration adopted for the parameter estimation of
the photovoltaic model.
Table 3. PSO Configuration

Category Details
Algorithm PSO
Objective RMSE minimization
Number of parameters 5
Initial population 50 particles
Maximum iterations 100

Stopping criterion

Initialization

Maximum iterations reached

Random (uniform within bounds)
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3.2. Powell Configuration

After the global search performed by PSO, the Powell method was employed for local refinement of the
parameters, aiming to improve the accuracy of the estimates by using the best global solution as the starting point.
Table 4 presents the configuration used for the Powell method.

Table 4. Configuration of the Powell Method for Local Refinement

Category Details
Algorithm Powell (derivative-free local optimization)
Objective Refine the parameters obtained by PSO
Initial guess Best global solution from PSO
Optimization method "Powell" via scipy.optimize
Parameter bounds Same as those defined in the PSO
Maximum number of iterations 100
Stopping criterion Maximum iterations reached

4. Results and Discussion

The following presents the results obtained from the model validation experiments, followed by a discussion on
the accuracy, robustness, and applicability of both the proposed method and the resulting digital model of the
photovoltaic module.

4.1 Estimated Parameters

The parameters estimated using PSO and PSO enhanced with Powell are presented in Table 5. Figure 5 visually
highlights the superior accuracy of the hybrid approach (PSO + Powell) in replicating the experimental -V curve,
while Table V displays the corresponding numerical values obtained by each method. Given the noticeable
deviation of the PSO only curve from the experimental data, the discussion will focus solely on the comparison
between the experimental results and the curve obtained using the hybrid estimation approach. This decision is
supported by the fact that the PSO only model fails to accurately capture the knee and tail regions of the I-V
characteristic, which are critical for evaluating model fidelity.

Table 5 Comparison of the Estimated Parameters (SDM) using PSO and PSO + Powell

Parameter Unit Value (PSO) Value (PSO+Powell)
Ipn A 3.4568 3.4275
Iy A 1.0000e-10 3.2272e-10
n - 1.1179 1.1577
R Q 0.50309 0.24018

Rgp Q 390.6199 406.3782
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Curve IV - PSO vs Powell (Local refinement)
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Figure 5. Comparison between the experimental -V curve and the curves generated by PSO and PSO + Powell.

4.2 Experimental vs Simulated Curves (I-V and P-V)

After determining the model parameters, it is essential to validate the accuracy of the proposed approach. To this

end, the characteristic current-voltage (I-V) and power-voltage (P—V) curves generated by the simulated model,

using the estimated parameters, are compared with experimental measurements. This visual comparison enables

assessment of the model's fidelity in replicating the real behavior of the photovoltaic module under different

operating conditions. The corresponding curves are presented in the figures below.

|-P Curves — Model and Experimental (500 W/m? and 1000 W/m?)

60 -

40 -

Powrer (W)

20
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®  Model 1000 Wim*
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0 2 4 6 3 10 12 14 16 18 20
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Figure 6. -V Curve, Model vs Experimental (500 W/m? and 1000 W/m?)
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|-P Curves — Model and Experimental (500 W/m? and 1000 W/m?)
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Figure 7. P-V Curve, Model vs Experimental (500 W/m? and 1000 W/m?)
4.3 Error Metrics

To evaluate the performance of the obtained model, five widely recognized statistical metrics were employed:
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Coefficient of
Determination (R?), and Mean Absolute Percentage Error (MAPE). These indicators quantify the discrepancy
between the model's predictions, based on the extracted parametersand the experimental data collected in real time
from the photovoltaic panel. RMSE, MSE, and MAE evaluate the magnitude of the prediction errors. RMSE and
MSE penalize larger deviations more heavily due to squaring, while MAE offers a more robust measure against
outliers. In all three cases, lower values indicate better model performance, with zero representing a perfect fit. R?
measures the proportion of variance in the experimental data explained by the model, ranging from 0 to 1, with
values closer to 1 indicating a better fit. Negative R? values suggest that the model underperforms compared to a
naive prediction based on the mean. MAPE, expressed as a percentage, enables an intuitive understanding of the
average prediction error relative to the actual values, making it particularly useful for cross-comparison across
datasets of different scales. In the context of the Single Diode Model (SDM), RMSE and MAPE are especially
relevant, as they directly reflect the model's ability to replicate the electrical behavior of the photovoltaic module
under varying conditions. Table 6 summarizes the results obtained for all performance metrics, supporting the
effectiveness of the proposed estimation methodology [9], 61-64]. Table VI presents the values obtained for these
metrics.

Table 6 Performance metrics (MAE, MSE, RMSE, R?, and MAPE)

Metrics I-v I-P
1000 W/m? 500 W/m? 1000 W/m? 500 W/m?
MAE (A/W) 0.0156 0.0061 0.2932 0.1021
MSE (AYW?) 0.0011 0.0001 0.4935 0.0327
RMSE (A/W) 0.0333 0.0094 0.7025 0.1809
R? 0.9983 0.9993 0.9985 0.9996
MAPE (%) 1.36 0.90 1.39 0.93
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4.4 Discussion of the Results

The results indicate a strong correlation between the simulated data and the experimental data. For the [-V curves,
the RMSE values are very low, 0.0094 A and 0.0092 A for 1000 W/m? and 500 W/m?, respectively, highlighting
the model's effectiveness in accurately representing the real behavior of electric current as a function of voltage.
Although the RMSE values for the I-P curves are higher (0.4430 W and 0.1443 W), this is expected due to the
nature of electric power, which is the product of current and voltage. Small variations in either quantity are
amplified when calculating power, especially near the maximum power point. Furthermore, the high R? values (all
above 0.998) reinforce the quality of the fit, indicating that the model is capable of explaining more than 99.8 %
of the variability in the experimental data. The Mean Absolute Percentage Error (MAPE) also remained below 1.5
% in all cases, which is acceptable and desirable for applications that require high reliability, such as generation
forecasting and fault detection in photovoltaic systems. Despite small discrepancies observed, particularly in the
power curves, the errors remain within acceptable ranges for simulation, energy estimation, and future applications
in digital twins. An important advantage of the hybrid approach adopted in this study is also highlighted in terms
of computational efficiency. It was possible to achieve high levels of accuracy with only 100 PSO iterations,
followed by refinement using the Powell method. In contrast, studies such as [65-68] which rely exclusively on
PSO, require up to 1000 iterations to achieve convergence and satisfactory results in the parameter estimation of
the single diode model. This significant difference underscores the potential of the hybrid strategy not only to
improve model accuracy but also to substantially reduce computational cost. Figure 6 illustrates the comparison
between the simulated I-V curves (PSO and Powell) and the experimental curve, reinforcing the performance of
the proposed methodology.

4.5 Relevance of the Model for Digital Twin Applications

Although this work does not yet implement a full Digital Twin (DT) architecture, it establishes a solid foundation
by delivering a validated and parameterized digital representation of a photovoltaic (PV) module, derived from
experimental data. This model accurately replicates the electrical behavior of the real device, making it highly
suitable for integration into future DT applications.

A digital twin is a dynamic virtual counterpart of a physical system, continuously synchronized via sensor data.
This integration enables real-time monitoring, control, diagnostics, and performance optimization. In this context,
the proposed PV model can be incorporated into DT platforms to support key tasks such as operation, energy
management, and predictive maintenance.

Beyond its value for offline analysis, the model developed herein serves as a critical building block for advancing
digital twin technologies in solar energy. It contributes to greater efficiency, reliability, and intelligence in the
management of PV systems, especially in remote or underserved regions, where technical support is limited and
operational continuity is essential.

5. Conclusion

This study presented the modeling and experimental validation of a 60 W monocrystalline photovoltaic (PV)
module, using the Single-Diode Model (SDM) as the mathematical foundation. The model parameters were
extracted through a hybrid optimization approach that combines Particle Swarm Optimization (PSO) with the
Powell method. Experimental tests were conducted under two irradiance levels (1000 W/m? and 500 W/m?) using
a flash-type solar simulator under standard test conditions (25 °C and AM1.5). The resulting model reproduced
the experimental -V and P—V curves with high fidelity, achieving low error metrics (such as MAE and RMSE)
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and coefficients of determination (R?) above 0.998, demonstrating excellent accuracy in representing the module's
electrical behavior. A key highlight is that this high level of performance was achieved with only 100 PSO
iterations, significantly fewer than the 1000 iterations commonly required by pure PSO approaches, demonstrating
the computational efficiency of the proposed hybrid method. The obtained solution provides a robust foundation
for the development of digital twins for photovoltaic systems. While the complete digital twin architecture was
not implemented in this study, the parametrized model is fully applicable for tasks such as energy forecasting,
simulation under varying environmental conditions, and real-time fault detection by comparing simulated versus
measured behavior. The model’s structure is also compatible with hybrid approaches that integrate physical and
data-driven techniques, expanding its application potential. Additionally, the experimental dataset, including
voltage, current, irradiance, and temperature measurements, will be made publicly available on GitHub and Kaggle
to support researchers who lack access to specialized laboratory infrastructure. Future work will focus on extending
the model to capture dynamic phenomena, such as transient responses and partial shading effects. Moreover, the
model will be integrated into a full real-time digital twin architecture, connected via Internet of Things (IoT)
protocols, enabling continuous monitoring, predictive maintenance, and intelligent control of PV systems. This
evolution paves the way for more efficient, autonomous, and resilient solar energy systems. This work contributes
to the advancement of the field of digital twins for solar energy, offering a robust and efficient modeling approach
ready for real-world deployment.

Data Availability Statement: The datasets generated and analyzed during the current study will be publicly
available in the GitHub repository: https://github.com/Ufuene/Digital-Twin-for-Photovoltaic-Systems .
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