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Abstract 

Demand forecasting is a central issue in last-mile logistics, where operational performance depends on a delicate 

balance between prediction accuracy and interpretability of results. This study offers a rigorous comparison 

between two radically different modeling approaches: Prophet, a transparent additive model well-suited to 

decomposable time series, and GPT-2, a modified transformer capable of capturing complex and nonlinear demand 

dynamics. Using real-world delivery data, we conduct a thorough evaluation of both models based on several 

criteria: forecast accuracy (MAE/RMSE), robustness to demand volatility, computational efficiency, and 

sustainability impact. To ensure a fair comparison, hyperparameter optimization is systematically conducted using 

Optuna, ensuring optimal configurations for each model. The results reveal that Prophet excels in stable demand 

environments, thanks to its ease of interpretation and regularity, while GPT-2 demonstrates a marked adaptability 

to unpredictable variations, at the cost of higher computational costs. The article concludes with practical 

recommendations for logistics stakeholders, proposing tailored selection criteria (accuracy, explainability, 

resource constraints) based on the specificities of operational environments. This work aims to bring theoretical 

advances in predictive modeling closer to the realities of last-mile logistics, providing a concrete decision-making 

framework for implementing forecasting solutions based on artificial intelligence.  

 

Keywords: Prophet; GPT-2; Time series; Last mile logistics; Demand forecasting; Artificial intelligence; 
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1. Introduction 

Last mile logistics, a critical step representing 15 to 40% of total logistics costs and contributing significantly to 

CO₂ [1], requires accurate forecasting models to optimize fleets and routes. Traditional methods (ARIMA, linear 

regression) struggle to integrate complex variables such as weather or promotional events, limiting their usefulness 

in dynamic contexts [8]. Faced with these challenges, two approaches are emerging: Prophet, a hybrid model 

designed for time series with explicit [2], and GPT-2, a language model adapted to time sequences via its 

transformer architecture [9]. This paper compares these two models on delivery data of different sizes, evaluating 

their accuracy (MAE, RMSE) and their impact on fleet sizing and carbon emissions. The objective is to determine  
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whether LLMs, despite their complexity, outperform specialized tools like Prophet in a constrained operational 

context, where interpretability and speed are crucial [5]. The results will guide practitioners in choosing a model 

that balances performance, costs and sustainability. 

This study explores two approaches to customer demand forecasting, implementing the GPT-2 and Prophet 

models. Each model is optimized through hyperparameter tuning with Optuna and then evaluated using 

performance metrics for accuracy and efficiency. The performance of different models is compared based on 

metrics such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The analysis highlights the 

ability of each model to handle different demand patterns. The study concludes with recommendations for future 

research and practical applications. In particular, it highlights the potential of Transformer-based models to 

improve forecasting accuracy and optimize supply chain efficiency. The goal is to provide companies and 

researchers with a guide for choosing the most appropriate fore-casting methods and strengthening the 

responsiveness of supply chains to market fluctuations. 

2. Background Literature 

Prediction models in last mile logistics fall into two categories, each addressing the specific challenges of the 

sector differently. ARIMA [10] and LSTM [11] are two classical forecasting methods that have been used in many 

fields and have been the most popular for a long time. Nonetheless, when utilized in last-mile logistics, these 

models demonstrate numerous significant constraints. ARIMA is good for stationary time series, but it can't 

include outside factors like weather, marketing campaigns, or special events, which makes it less useful. This 

limitation makes it much less useful in logistics settings that are very dynamic and where demand is affected by 

many outside factors. On the other hand, LSTM models can learn complicated non-linear relationships in time 

series data. However, they need a lot of historical data to work well and are hard to understand. This lack of 

transparency makes it hard for logistics decision-makers to explain and check their forecasting choices, especially 

in industries with strict rules [12]. As a result of these problems, newer forecasting models have been suggested 

as possible solutions. Prophet is a tool made specifically for predicting time series. It uses an explicit additive 

decomposition framework to separate trend, seasonality, and regressor effects. This means that it can easily include 

things like holidays and promotions. Prophet's clear structure makes it a great fit for operational logistics settings. 

It has also shown great performance in urban warehouse settings, with an average forecasting error of about 8% 

on multivariate datasets [2]. At the same time, fine-tuning has made it possible for large language models like 

GPT-2 to be used for time series forecasting by treating time series as tokenized text. GPT-2 can model long-range 

dependencies and capture complex temporal patterns thanks to its transformer-based architecture. However, this 

comes at the cost of making the model harder to understand and more computationally intensive [7]. 

The choice of the right forecasting model is also affected by important operational problems that come with last-

mile logistics. One big problem is that demand can suddenly spike for reasons like flash sales or bad weather. 

Because they depend on historical linear patterns [2], classical models like ARIMA always underestimate these 

sudden changes. On the other hand, more complicated models like LSTM and GPT-2 may overfit when there isn't 

enough training data. Another important thing to think about is how easy it is to understand, which is especially 

important in fields like food and drug logistics, where following the rules and being able to trace decisions are 

important. In this case, Prophet has a clear advantage because it breaks down forecast components in a way that is 

easy to understand and trust, which helps stakeholders understand and trust the model's outputs. On the other hand, 

big language models like GPT-2 mostly work as black boxes, which makes it hard to explain or justify their 

predictions in real-world decision-making situations [5]. 

Models like Prophet or SARIMA remain popular for their simplicity and interpretability. They are optimal for 

time series with explicit seasonal patterns and limited data volumes [8]. Hybrid approaches like ARIMA-LSTM 
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combine the statistical rigor of classical models with the flexibility of neural networks, improving accuracy on 

complex data [13].  

Transformers, initially designed for NLP, are adapted to time series via architectures such as Informer [14-15] or 

TFT [16]. These models capture long-term dependencies and multivariate interactions, ideal for dynamic data.  

LLMs such as GPT-2, GPT-3 are emerging as versatile tools, capable of merging textual data (e.g. customer 

reviews) with time series for contextual forecasting [17]. A 10% improvement in forecast accuracy can reduce 

logistics costs by 5–15% by avoiding fleet overutilization and delay penalties [18]. Hybrid models (e.g. Prophet + 

Gradient Boosting) have enabled companies like Amazon to reduce their storage costs by 12% while maintaining 

a service rate of 98% [19].  

Route optimization through accurate forecasting reduces empty kilometers traveled, reducing CO₂ emissions by 8 

to 20% depending on urban density [20]. A pilot application of generative AI (GPT-3) in logistics planning reduced 

emissions by 15% for a delivery network in Sweden, by synchronizing routes with weather forecasts [21]. The 

energy cost of deep learning models (e.g., GPT-3 training consumes 1.287 MWh) offsets their ecological gains 

[22]. Large-scale adoption requires cloud infrastructure and technical skills, a barrier for SMEs [23].  

3. Methodology  

3.1. Data sets and data preprocessing 

In this study, three distinct datasets were used to evaluate the robustness of the two models (GPT-2 and Prophet) 

to different time series lengths: A 2-year set (~730 rows), A 4-year set (~1460 rows), A 6-year set (~2190 rows) 

as shown in Figure 1-3. Preprocessing consisted of several crucial steps to ensure the quality and relevance of the 

models' input data: Data cleaning, Temporal alignment (time series were synchronized according to the same 

temporal granularity, daily aggregation was applied), additivity and stationarity study: visual tests (plotting of 

series, display of the rolling mean and rolling standard deviation) and statistics (Dickey-Fuller test) were used to 

assess the stationarity of the series. Time series decomposition: each series was decomposed into trend, seasonality 

and residuals using classic tools. ACF (Autocorrelation Function) functions were used to detect significant 

temporal dependencies. 

 
Figure 1. Small dataset (2 years) 
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Figure 2. Average Data Set (4 years) 

 

 
Figure 3. Large dataset (6 years) 

3.2. Forecasting models  

3.2.1. Prophet Model 

We use the Prophet model because it can show time series data in a clear way that combines long-term trends and 

multiple seasonal patterns. There are two main ideas behind this method. First, it stresses clear modeling through 

Prophet's additive architecture, which breaks down forecasts into understandable parts, such as trend, seasonality, 

and external regressors. This lets practitioners directly look at and understand how each factor affects demand 

behavior [2]. Second, the method uses systematic optimization by doing 50 Optuna trials to carefully tune the 

hyperparameters [24]. The goal is to get the best possible accuracy when predicting real-world last-mile delivery 
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data. These design choices directly address the main problems with last-mile logistics, such as dealing with 

seasonal demand spikes, being able to respond to changes caused by promotions or events, and the need for 

logistics professionals to be able to understand and make decisions. Table 1 shows the summary of proposed 

hyperparametric configuration and optimization for the Prophet model. 

 

Table 1. Summary of hyperparametric configuration and optimization for Prophet model 

Component Parameter / Setting Range / Value Impact / Purpose 

Trend n_changepoints 10 – 30 Allows flexible modeling of structural shifts in demand 

  changepoint_prior_scale 0.001 – 0.5 Controls the flexibility of trend changes 

Seasonality weekly_fourier_order 3 – 15 Sets the complexity of weekly patterns (weekday/weekend cycles) 

  seasonality_prior_scale 0.1 – 20 Regulates amplitude of seasonal components 

  annual seasonality 
Enabled,  
auto regularized 

Captures long-term periodic patterns while preventing overfitting 

External 

Regressors 
add_regressor() Dynamic 

Incorporates covariates (e.g., promotions, holidays, weather) into 

forecasts 

Validation 

Initial window 365 days One year of historical data used for training 

Forecast horizon 150 days Medium-term prediction evaluation 

Step size 90 days Iterative shift for time-based cross-validation 

Target metric MAE Prioritizes operational robustness in forecasting 

 

3.2.2. Modified Architecture of GPT-2 

GPT-2, which is based on the Transformer architecture [14], uses attention mechanisms to model long-term 

dependencies in sequential data. Recent studies [17, 25] have shown that it can be fine-tuned to work with time 

series forecasting. We expanded the GPT-2 architecture, which was first made for natural language processing, to 

predict logistic time series. We do this by creating a new framework based on three theoretical principles. First, 

temporal tokenization turns digital sequences into embeddings using a 90-step sliding window method, as 

described in [18]. This lets the model capture medium-term contextual dependencies. Second, to avoid overfitting 

on small datasets (≤8,000 data points), we use complexity optimization by letting the number of layers (from 2 to 

10) and the number of attention heads (2, 4, or 8) be changed. Third, knowledge integration uses nine pre-

calculated covariates, such as trends, seasonalities, and trigonometric encodings, to let the model combine 

historical patterns with new variables. This adaptation is enhanced by meticulous hyperparameter optimization 

through Optuna, coupled with sophisticated regularization techniques, tackling the difficulties encountered in 

deploying large language model transformers within data-restricted operational logistics settings. 

The modified architecture combines a projection layer (Linear + GELU) that transforms the 9 input features into 

256-D embeddings. The lightweight configuration of our GPT-2 kernel (n_embd=256, n_layer=2-10, 

n_head=2/4/8, dropouts ∈ [0.05,0.3]) relies on efficiency principles validated by recent literature. As demonstrated 

by [26-27], the controlled reduction of embedding dimensions and the number of attention heads preserves 

representational capabilities while optimizing the computational footprint. The dropout ranges, calibrated 

according to [28], provide robust regularization against overfitting. This approach is in line with the 

recommendations of [29] for efficient transformers and is in line with lightweight temporal architectures such as 

the Temporal Fusion Transformer [16]. Ultimately, a final regression layer (Linear) generates the predictions. This 

structure preserves the ability of transformers to model long dependencies while reducing complexity for limited 

data. Table 2 shows the summary of proposed hyperparametric configuration and optimization for the GPT-2 

model. 
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Table 2. Proposed fine-tuning strategy hyperparametric configuration for GPT-2 

Component 
Parameter / 

Setting 
Range / Value Impact / Purpose 

Cost Function Huber Loss δ 0.5 – 2.0 Provides robustness to outliers while balancing sensitivity and stability 

Optimizer AdamW 
weight_decay = 
0.005 

Optimizes network weights with regularization to prevent overfitting 

Learning Rate 

Management 

LR reduction 

factor 
0.2 Reduces learning rate by 80% after 7 epochs without improvement 

  Early stopping 10 stagnant epochs Stops training to prevent overfitting when performance plateaus 

Regularization 

  

Gradient clipping max norm = 1.0 Limits gradient magnitude to ensure stable training 

Layer-specific 
dropout 

Configurable Prevents overfitting by randomly deactivating neurons during training 

4. Results and Comparative Performance Assessment  

4.1. Analysis of Prophet Results  

The performance of the Prophet model was evaluated on its ability to forecast short and medium-term logistics 

demand. The results were analyzed using two key metrics: Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE), measuring the absolute accuracy and the magnitude of extreme errors, respectively as shown in 

Figure 4-6.  

 

 
Figure 4. Predictions vs Actuals of a series of two years with prophet 



 
 Inspire Intelligence Journal, Vol. 1, No. 1, 2026   35 of 41 

 
Figure 5. Predictions vs Actuals of a series of four years with prophet 

 

 

Figure 6. Predictions vs Actuals of a series of six years with prophet 
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4.2 Analysis of GPT-2 Results 

The performance of the GPT-2 model adapted to time series was evaluated on its ability to forecast logistics 

demand with complex patterns. The results were analyzed via Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE) as show in Figure 7-8 for two-year series, Figure 9-10 for four-year series and Figure-11-

12 for six-year series. 

 

 
Figure 7. Comparison of different experiments training vs validation of two-year series with GPT-2 

 

 
Figure 8. Scatter plot of predictions and errors of two-year series with GPT-2 
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Figure 9. Comparison of different experiments training vs validation of four-year series with GPT-2 

 

 
Figure 10. Scatter plot of predictions and errors of four-year series with GPT-2 
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Figure 11. Comparison of different experiments training vs validation of six-year series with GPT-2 

 
Figure 12. Scatter plot of predictions and errors of six-year series with GPT-2 

 

The comparative research study of the Prophet and GPT-2 models reveals unique performance trends at different 

demand levels in last-mile logistics forecasting. Prophet consistently shows better accuracy for small, average, and 

large demand situations when using mean absolute error (MAE) and root mean square error (RMSE) as the main 

measures as shown in Table 3. For times when demand is low, Prophet has an MAE of 0.043 and an RMSE of 

0.0525, which is better than GPT-2, which has an MAE of 0.0731 and an RMSE of 0.0934. In situations with 

medium demand, Prophet performs well, with an MAE of 0.0373 and an RMSE of 0.0466. On the other hand, 

GPT-2 has higher errors (MAE: 0.0616, RMSE: 0.0774), which means it is more sensitive to moderate changes. 

Prophet keeps making stable predictions during busy times (MAE: 0.0375, RMSE: 0.0481), but GPT-2 is still not 

as accurate (MAE: 0.0595, RMSE: 0.0789). These results show that GPT-2 could be useful for modeling complex 

dependencies. However, Prophet's clear additive decomposition and structured handling of trends and seasonality 

make it easier to make reliable and consistent forecasts in a variety of operational conditions. 
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Table 3: Comparative analysis of forecasting techniques using MAE and RMSE on different datasets  

Matric MAE RMSE 

Model Prophet GPT-2 Prophet GPT-2 

Little 0.043 0.0731 0.0525 0.0934 

Average 0.0373 0.616 0.0466 0.0774 

Big 0.0375 0.0595 0.0481 0.0789 

5. Conclusion 

The proposed study compared two time series forecasting models, Prophet and GPT-2, on three datasets of 

different durations (2, 4, and 6 years). Each model was rigorously evaluated using metrics such as mean absolute 

error (MAE) and root mean square error (RMSE). The results provide a detailed comparative analysis of the 

performance of the two approaches. This study highlights the most suitable solutions according to use cases, while 

highlighting the strengths and practical applications of each model. The results summarized in the table below 

detail the performance of each model, to help select the most appropriate model for specific forecasting tasks. 

Comparative analysis (table 2) of prediction performance between Prophet (developed by Facebook) and GPT-2 

reveals differences across three data classes (Small, Medium, Large). MAE (Mean Absolute Error) and RMSE 

(Root Mean Square Error) metrics demonstrate the systematic superiority of Prophet across all scenarios. These 

results confirm the findings, which highlight Prophet's robustness to limited data. They also align with the 

observations, noting that specialized sequential models generally outperform generative architectures for time 

series. GPT-2's sensitivity to data size is particularly visible in 'Medium' category where its MAE deviates sharply 

(+65%) corroborates the limitations regarding out-of-distribution extrapolation.  

Abbreviations  

The following abbreviations are used in this manuscript:  

GPT-2   Generative Pretrained Transformer  

LSTM   Long Short-Term Memory 

ARIMA   AutoRegressive Integrated Moving Average 

SARIMA  Seasonal AutoRegressive Integrated Moving Average 

HPO   Hyperparameter Optimization 

LLM   Large Language Model 
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