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Abstract 

Despite being curable and treatable in the majority of modern nations, tuberculosis (TB) remains a major public 

health concern and a top cause of infection-related deaths globally. Non-clinical factors like biological, socio-

economic, and environmental factors are relevant to prediction and prevention, as relying only on clinical signs 

does not encompass other risk factors that impact tuberculosis transmission. This study's main goal is to examine 

the application of machine learning (ML) techniques while emphasizing the impact of non-clinical elements. Data 

for the study was collected from a variety of public and private healthcare facilities in a few chosen states in the 

Niger Delta region of Nigeria. The ability of three machine-learning classifiers is evaluated to predict and detect 

dengue fever for the application in TB. RIPPER was found to be a balanced classifier due to its high F-Measure 

and ROC-AUC scores. This study focuses on non-clinical factors that affect the spread of TB in addition to the 

significance of ML with its inclusion of non-clinical factors with its approach to prediction. 

Keywords: Tuberculosis Prediction, Causative Data, Machine Learning, Tuberculosis, Resource-Limited 

Areas, RIPPER. 

1. Introduction 

With an estimated 10.6 million individuals in 2021 contracting the disease, 10.1 million in 2020, 1.6 million 

fatalities in 2021, and 1.5 million fatalities in 2020, TB remains a leading cause of infectious death globally. With 

an incidence rate of tuberculosis which increased by 3.6% in 2021, in comparison to 2020, this suggests a reversal 

in trend, decreasing nearly 2% yearly in the span of the past two decades [1]. Ranking first in Africa and sixth 

globally, Nigeria reports for about 4.6% of global burden resulting from TB, with approximately 15 Nigerian 

fatalities every hour due to TB, which is roughly 125,000 deaths yearly [2]. According to provisional data, over 

361,000 TB cases were reported in Nigeria in 2023. Overall, this marked a 26% increase in cases compared with 

2022 [3]. 
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Although clinical signs and symptoms of TB benefit presumptive diagnosis: cough, hemoptysis, dyspnoea, chest 

pain, night sweating, anaemia, tachycardia, lung-auscultation finding, fever, low body-mass index, low mid-upper 

arm circumference, expeditious diagnosis and treatment are advocated to reduce and prevent tuberculosis (TB) 

transmission, resulting in a reduction of the TB infection reservoir, which is essential for control and eradicate TB 

worldwide. 

Depending solely on clinical symptoms, however, may not be enough, especially in areas with limited resources 

as TB symptoms frequently overlap with other febrile illnesses. To address this, utilizing non-clinical factors such 

as biological, environmental, and socioeconomic variables could provide fresh perspectives for enhancing TB 

prediction models. The prevalence of diseases and their dynamics of transmission are significantly influenced by 

non-clinical factors [15]. While environmental factors affect vector habitats and contribute to the spread of vector-

borne diseases, biological factors can affect an individual's susceptibility to infectious diseases [16, 17]. 

Additionally, socioeconomic factors have a significant impact, especially in low-resourced communities. Machine 

learning techniques can capture intricate relationships and interactions that could improve the accuracy of TB 

predictions by incorporating these various factors into predictive models which can be particularly useful in areas 

with limited resources where laboratory-based diagnostics are scarce. 

Through the contribution of machine learning (ML), healthcare has seen substantial developments and 

advancements, especially in the diagnostics of febrile diseases, and in identifying subtle patterns human experts 

may overlook [4, 5]. Although clinical symptoms have been used to diagnose febrile diseases using ML techniques, 

recent research has also looked at using non-clinical factors to predict infectious diseases [15, 16]. ML techniques 

have been applied in predicting malaria using environmental factors [6, 17]. Similarly, environmental factors on 

febrile-disease prediction, including long-lasting insecticide-treated nets, indoor residual spraying, intermittent 

preventive prophylaxis, malaria prevention strategies, and behavioural change education, significantly impacted 

malaria prediction [7]. 

This study aims to assess the predictive power of non-clinical factors for tuberculosis, focusing on biological, 

environmental, and socioeconomic variables over traditional clinical symptoms. By evaluating various machine 

learning classifiers, the research will identify the model best suited to capture the complex interactions of non-

clinical determinants that influence yellow fever risk. This approach will enhance predictive modelling 

capabilities, offering more precise tools for early risk assessment and supporting timely intervention strategies for 

TB management in high-risk regions. 

The remainder of the paper is structured as follows: Section 2 has some literature review. Section 3 presents the 

methodology used in the study. The experimental settings are provided in section 4. This is followed by the results 

and analysis in section 5. Finally, the conclusions and future works are presented in section 6. 

2. Literature Review 

Recent advancements in healthcare highlight the potential benefits of Artificial Intelligence (AI). While human 

decision-making remains essential, human error is unavoidable. A collaborative relationship between AI-powered 

technologies and human judgment holds significant promises for strengthening healthcare systems and improving 

patient outcomes. 

In the healthcare industry, pathologists and other professionals are notably affected by AI developments. Although 

current AI technologies have not yet reached full autonomy in diagnostic accuracy, confirmation from a pathologist 

is still required. Nevertheless, AI offers substantial advantages, such as reducing researcher workload and 

decreasing the likelihood of missed diagnoses. Designed to manage high workloads and address human error and 

bias, AI remains a desirable and effective tool [8]. 

In many developing countries, TB diagnosis continues to rely heavily on traditional methods, including blood 

tests, cultures, sputum analysis, and biopsies. These procedures often require one to two weeks or more to yield 
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diagnostic results and are sometimes affected by accuracy limitations. The integration of machine learning 

algorithms presents a viable solution to overcome these challenges [9]. 

Environmental factors also play an important role in the transmission of TB. In Sub-Saharan Africa, the mining 

industry has been strongly linked to higher TB incidence and mortality. Contributing factors include confined 

spaces, poor ventilation within mining facilities, and constant exposure to silica dust. Additionally, the proximity 

of mining hostels to high-risk areas, such as those with widespread sex work, increases transmission risks [10]. 

Poverty-related housing conditions further exacerbate the issue. Inadequate housing often leads to overcrowding 

and poor sanitation, both of which are recognized as major contributors to TB spread [10]. 

Biological factors significantly influence the prevalence of TB. TB is more common in the elderly population due 

to weakened immune systems. Since TB is airborne, it is more easily transmitted among individuals with 

compromised immunity [12]. Individuals who have a unhealthier lifestyle are also susceptible, specifically 

Individuals who are exposed to smoking, indoor air pollution, alcohol use, and under-nutrition face a considerable 

portion of mortality [13]. 

Socioeconomic factors also have a strong impact on TB transmission. In developed countries, TB is nearly 

eradicated. However, in many low-income or developing regions, the disease remains widespread. According to 

one study, regions with a high proportion of elderly individuals, particularly where access to healthcare services 

and insurance is limited, experience greater TB incidence [12]. In wealthier areas, access to healthcare services 

contributes to low TB rates, while in financially disadvantaged areas, the inability to afford adequate care results 

in TB becoming endemic [14]. 

3. Methodology 

3.1 Data Collection 

Data for this study were collected from both public and private secondary and tertiary health facilities in selected 

states within the Niger Delta region of Nigeria. The dataset, derived from patient consultation records, includes 

4,868 patient instances. This dataset was used to train and test the classifiers, allowing for an evaluation of their 

predictive performance in identifying risk factors associated with dengue fever. Table 1 below provides the 

descriptive statistics of the study participants. 

A total of 62 physicians, all experienced in diagnosing febrile illnesses, participated in the study. Among them, 43 

were male and 19 were female. The majority (58) were aged 30 years or older, with 32 having more than 10 years 

of experience diagnosing and treating febrile diseases. 

The reliability of the study instrument was measured using Cronbach’s Alpha, which yielded a value of 0.740. 

Since this exceeds the 0.7 threshold [18], the instrument was deemed reliable. The validity of the research tool was 

ensured through a pilot study, and content validity was confirmed by an independent review conducted by 

experienced colleagues who were not involved in the study. 

 

3.2 Ethical Considerations 

Informed consent was obtained from all participants who opted to take part in the study. They were thoroughly 

informed about the study’s purpose and procedures prior to providing their consent. Participant confidentiality was 

maintained through data anonymization to protect their identities, and the data was stored securely. Ethical 

approval for the study was sought and granted by the Mount Royal University Ethics Committee (Human Research 

Ethics Board # 102232) and the University of Uyo Teaching Hospital health research ethical committee (Ref # 

UUTH/AD/S/96/VOL.XX1/450). 
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Table 1. Descriptive Statistics of Study Participants 

State Frequency % 

Akwa Ibom 1223 25 

Cross River 1531 31 

Imo 882 18 

Rivers 1232 25 

Age Group 4868 100 

<19 yrs 1934 40 

19-24 yrs 424 9 

25-44 yrs 1557 32 

45-60 yrs 600 12 

>60 yrs 353 7 

Gender 4868 100 

Male 2175 45 

Female 2693 55 

 

3.3 Experimental Settings 

Evaluating a supervised learning model is a crucial step in assessing its performance. For machine learning 

predictive models, an error table, commonly referred to as a confusion matrix, is typically used. Additionally, we 

consider related metrics such as false positive (FP), false negative (FN), true positive (TP), and true negative (TN), 

which provide further insights into model performances. We outline several common criteria for evaluating 

predictive models, including accuracy, sensitivity, specificity, and the harmonic mean (also known as the F1 

score).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +𝐹𝑃 + 𝐹𝑁
                  (1)  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
      (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
      (3) 

 

F-1 score = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
     (4) 

  

A tenfold cross-validation testing method was employed across all experiments. In this approach, the dataset is 

divided into ten subsets, with nine subsets used for training and one subset reserved for testing the model’s 

predictions. This process is repeated ten times, ensuring that each subset is used for testing exactly once. By 

applying this method, overfitting is minimized, and the classifiers are evaluated more fairly and reliably. 

The performances of these models were evaluated and compared using key performance metrics, allowing us to 

make recommendations based on their predictive capabilities. Figure 1 below provides a summary of the entire 

process used in the study, highlighting the workflow. 
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Figure 1. Workflow of ML application on TB detection 

 

The dataset consisted of 19 attributes (features). These features are highlighted in table 2 below. 

 

Table 2. Features in the Dataset 

* Feature Description 

Biological Factors 

1 GNCN Genetic Condition 

2 HIBP High blood Pressure 

3 HICOL High cholesterol 

4 UNCHRIL Underlying chronic illness 

5 ALG Allergies 

Environmental and Socioeconomic Factors 

6 STRVEN Street vendor 

7 PPHYG Poor personal hygiene 

8 PECON Poor environmental conditions 

9 OVCRW Overcrowding 

10 IVDRUS Intravenous drug use 

11 TRVENRG Travel to endemic region 

12 SKPUPR Skin puncture procedure 

13 DRCOIFPS Direct contact with infected person 

14 LWFLIN Low fluid intake 

15 EXPMQBT Exposure to mosquito bites 

16 SMEXSM Smoking or exposure to smoking 

17 EXIDARPOL Exposure to indoor air pollution 

18 Severity Severity of TB 

19 Class Medical practitioner confidence level 
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Table 3 below highlights the overall performance metrics of the 3 classifiers used in this empirical study. We are 

comparing 3 tree-based classifiers (Decision Table, RIPPER and PART). 

 

Table 3. Performance Metrics of the Models in Predicting High/Low TB Symptoms 

Classifier Accuracy Recall Precision F-Measure ROC-AUC 

Decision Table 0.894 0.632 0.841 0.675 0.717 

RIPPER 0.900 0.689 0.816 0.729 0.684 

PART 0.888 0.680 0.761 0.709 0.768 

 

 

Figure 2.  Performance of Classifiers 

According to Figure 2, within the recall metric, the classifier RIPPER was found to most accurately identify actual 

positive cases, as indicated by its value of (0.689). PART and Decision Table followed closely, with values of 

(0.680) and (0.632), respectively. 

Additionally, Decision Table achieved the best results in precision, the metric that determines the proportion of 

true positive entries among all entries classified as positive. This is an important factor for reducing false positives. 

With a precision score of (0.841), Decision Table is the best option for correctly identifying medium to high-risk 

tuberculosis cases. RIPPER follows with a precision of (0.816), performing at an intermediate level in identifying 

positive TB cases. PART, with a precision of (0.761), generates the most false positives compared to the other 

classifiers’-measure, which evaluates a model’s performance by balancing both precision and recall, shows that 

Decision Table had the lowest performance (0.675). Meanwhile, PART and RIPPER show moderate improvement, 

with F-measure scores of (0.709) and (0.729), respectively. In terms of ROC-AUC, which measures a model’s 

ability to distinguish between positive and negative cases, PART performed best with a score of (0.768). Decision 

Table followed with (0.717), while RIPPER had the lowest score at (0.684). 

In summary, if a balanced classifier is the priority, RIPPER, with the highest recall (0.689) and a strong F-measure 

(0.729), would be the most effective choice. For applications requiring strong class differentiation, PART, with its 

high ROC-AUC (0.768), solid recall (0.680), and F-measure (0.709), is a strong contender. Finally, Decision Table 

demonstrates competitive accuracy (0.894) and exceptional precision (0.841), making it the most suitable option 

in scenarios where minimizing false positives is critical. 
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4. Conclusion 

This paper emphasizes the importance of including non-clinical variables such as biological, environmental, and 

socio-economic factors in machine learning models for predicting the risk of Tuberculosis (TB). The results section 

presents an evaluation of three classifiers: Decision Table, RIPPER, and PART. Each classifier demonstrates 

specific strengths and weaknesses, making them suitable for different use cases depending on the goals of the 

client or decision-maker. If achieving balanced classification is the primary objective, RIPPER is the most effective 

model. It provides a strong F-measure, with balanced recall and precision, making it a suitable choice for a wide 

range of predictive tasks. PART achieves the highest ROC-AUC score (0.768), which reflects its strong ability to 

differentiate between positive and negative cases. It also delivers solid performance in recall (0.680) and F-measure 

(0.709), making it a well-rounded option. In contrast, Decision Table shows the highest precision, which is 

particularly valuable in situations where minimizing false positives is critical. In healthcare settings where 

resources are limited, timely and accurate risk assessments are essential to enable early diagnosis and intervention. 

Integrating non-clinical variables into machine learning models can improve diagnostic accuracy and contribute 

to reducing the spread of TB in underserved areas.  
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